A265767 Numerators of upper primes-only best approximates (POBAs) to 5; see Comments.
11, 37, 67, 97, 157, 307, 337, 367, 397, 487, 547, 757, 787, 907, 967, 997, 1117, 1567, 1657, 1747, 1867, 1987, 2287, 2437, 2617, 2707, 2857, 2887, 3037, 3067, 3217, 3307, 3457, 3547, 3637, 3697, 3847, 4057, 4297, 4597, 4957, 4987, 5107, 5167, 5197, 5347
Offset: 1
Examples
The upper POBAs to 5 start with 11/2, 37/7, 67/13, 97/19, 157/31, 307/61, 337/67, 367/73. For example, if p and q are primes and q > 19, and p/q > 5, then 97/19 is closer to 5 than p/q is.
Programs
-
Mathematica
x = 5; z = 200; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *) Numerator[tL] (* A265766 *) Denominator[tL] (* A158318 *) Numerator[tU] (* A265767 *) Denominator[tU] (* A023217 *) Numerator[y] (* A222568 *) Denominator[y] (* A265769 *)
Comments