cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A265766 Numerators of lower primes-only best approximates (POBAs) to 5; see Comments.

Original entry on oeis.org

7, 13, 23, 53, 83, 113, 233, 263, 293, 353, 443, 503, 563, 653, 683, 743, 863, 953, 983, 1163, 1193, 1283, 1553, 1583, 1733, 1913, 2003, 2153, 2213, 2243, 2333, 2393, 2543, 2843, 2963, 3083, 3203, 3413, 3593, 3803, 3863, 4133, 4283, 4643, 4703, 4733, 5153
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.

Examples

			The lower POBAs to 5 start with 7/2, 13/3, 23/5, 53/11, 83/17, 113/23, 233/47. For example, if p and q are primes and q > 17, and p/q < 5, then 83/17 is closer to 5 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 5; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *)
    Numerator[tL]   (* A265766 *)
    Denominator[tL] (* A158318 *)
    Numerator[tU]   (* A265767 *)
    Denominator[tU] (* A023217 *)
    Numerator[y]    (* A222568 *)
    Denominator[y]  (* A265769 *)

A265768 Numerators of primes-only best approximates (POBAs) to 5; see Comments.

Original entry on oeis.org

7, 11, 23, 37, 53, 67, 83, 97, 113, 157, 233, 263, 293, 307, 337, 353, 367, 397, 443, 487, 503, 547, 563, 653, 683, 743, 757, 787, 863, 907, 953, 967, 983, 997, 1117, 1163, 1193, 1283, 1553, 1567, 1583, 1657, 1733, 1747, 1867, 1913, 1987, 2003, 2153, 2213
Offset: 1

Views

Author

Clark Kimberling, Dec 19 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs to 5 start with 7/2, 11/2, 23/5, 37/7, 53/11, 67/13, 83/17, 97/19, 113/23, 157/31, 233/47. For example, if p and q are primes and q > 13, then 67/13 is closer to 5 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 5; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *)
    Numerator[tL]   (* A265766 *)
    Denominator[tL] (* A158318 *)
    Numerator[tU]   (* A265767 *)
    Denominator[tU] (* A023217 *)
    Numerator[y]    (* A222568 *)
    Denominator[y]  (* A265769 *)

A265769 Denominators of primes-only best approximates (POBAs) to 5; see Comments.

Original entry on oeis.org

2, 2, 5, 7, 11, 13, 17, 19, 23, 31, 47, 53, 59, 61, 67, 71, 73, 79, 89, 97, 101, 109, 113, 131, 137, 149, 151, 157, 173, 181, 191, 193, 197, 199, 223, 233, 239, 257, 311, 313, 317, 331, 347, 349, 373, 383, 397, 401, 431, 443, 449, 457, 467, 479, 487, 509
Offset: 1

Views

Author

Clark Kimberling, Dec 20 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs to 5 start with 7/2, 11/2, 23/5, 37/7, 53/11, 67/13, 83/17, 97/19, 113/23, 157/31, 233/47. For example, if p and q are primes and q > 13, then 67/13 is closer to 5 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 5; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *)
    Numerator[tL]   (* A265766 *)
    Denominator[tL] (* A158318 *)
    Numerator[tU]   (* A265767 *)
    Denominator[tU] (* A023217 *)
    Numerator[y]    (* A222568 *)
    Denominator[y]  (* A265769 *)

A342814 Numbers k such that k - 1 and floor(k/5) are both prime.

Original entry on oeis.org

12, 14, 18, 38, 68, 98, 158, 308, 338, 368, 398, 488, 548, 758, 788, 908, 968, 998, 1118, 1568, 1658, 1748, 1868, 1988, 2288, 2438, 2618, 2708, 2858, 2888, 3038, 3068, 3218, 3308, 3458, 3548, 3638, 3698, 3848, 4058
Offset: 1

Views

Author

Claude H. R. Dequatre, Mar 22 2021

Keywords

Comments

Except for a(1) and a(2), all terms == 8 (mod 10).
The first three absolute differences (d) between two consecutive floor(k/5) are respectively equal to 0, 1 and 4 and all the others to 6 or a multiple of 6.
Subsequence of A008864, by definition. - Michel Marcus, Mar 22 2021
For n >= 3, a(n) = 5*A023217(n-2) + 3. Higher terms also coincide with A265767 + 1. - Hugo Pfoertner, Mar 22 2021

Examples

			12 is a term because 12 - 1 = 11 and 11 is prime and 12/5 = 2.4 whose floor value is 2 and 2 is also prime.
97 is not a term because 97 - 1 = 96 and 96 is not prime although floor(97/5) = 19 is prime.
Initial terms, associated primes and d:
          k       k - 1     floor(k/5)     d
a(1)     12        11          2
a(2)     14        13          2           0
a(3)     18        17          3           1
a(4)     38        37          7           4
a(5)     68        67         13           6
a(6)     98        97         19           6
a(7)    158       157         31          12
a(8)    308       307         61          30
a(9)    338       337         67           6
a(10)   368       367         73           6
		

Crossrefs

Programs

  • Maple
    R:= NULL:
    p:= 1: count:= 0:
    while count < 100 do
      p:= nextprime(p);
      if isprime(floor((p+1)/5)) then
         R:= R,p+1; count:= count+1
      fi
    od:
    R; # Robert Israel, May 22 2024
  • Mathematica
    Select[Range[2,5000,2],And@@PrimeQ[{#-1,Floor[#/5]}]&] (* Giorgos Kalogeropoulos, Apr 01 2021 *)
  • PARI
    for(k = 1,10000,if(isprime(k - 1) && isprime(k\5),print1(k", ")))
Showing 1-5 of 5 results.