A265806 Numerators of primes-only best approximates (POBAs) to 1/(golden ratio) = 1/tau; see Comments.
2, 2, 3, 19, 23, 29, 97, 353, 563, 631, 919, 1453, 2207, 15271, 15737, 42797, 49939
Offset: 1
Examples
The POBAs to 1/tau start with 2/2, 2/3, 3/5, 19/31, 23/37, 29/47, 97/157, 353/571. For example, if p and q are primes and q > 157, then 97/157 is closer to 1/tau than p/q is.
Programs
-
Mathematica
x = 1/GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265806/A265807 *) Numerator[tL] (* A265799 *) Denominator[tL] (* A265798 *) Numerator[tU] (* A265797 *) Denominator[tU] (* A265796 *) Numerator[y] (* A265806 *) Denominator[y] (* A265807 *)
Extensions
a(14)-a(17) from Robert Price, Apr 06 2019
Comments