cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A265759 Numerators of primes-only best approximates (POBAs) to 1; see Comments.

Original entry on oeis.org

3, 2, 5, 13, 11, 19, 17, 31, 29, 43, 41, 61, 59, 73, 71, 103, 101, 109, 107, 139, 137, 151, 149, 181, 179, 193, 191, 199, 197, 229, 227, 241, 239, 271, 269, 283, 281, 313, 311, 349, 347, 421, 419, 433, 431, 463, 461, 523, 521, 571, 569, 601, 599, 619, 617
Offset: 1

Views

Author

Clark Kimberling, Dec 15 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...).
See A265772 and A265774 for definitions of lower POBA and upper POBA. In the following guide, for example, A001359/A006512 represents (conjecturally in some cases) the Lower POBAs p(n)/q(n) to 1, where p = A001359 and q = A006512 except for first terms in some cases. Every POBA is either a lower POBA or an upper POBA.
x Lower POBA Upper POBA POBA

Examples

			The POBAs for 1 start with 3/2, 2/3, 5/7, 13/11, 11/13, 19/17, 17/19, 31/29, 29/31, 43/41, 41/43, 61/59, 59/61. For example, if p and q are primes and q > 13, then 11/13 is closer to 1 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265759/A265760 *)
    Numerator[tL]   (* A001359 *)
    Denominator[tL] (* A006512 *)
    Numerator[tU]   (* A006512 *)
    Denominator[tU] (* A001359 *)
    Numerator[y]    (* A265759 *)
    Denominator[y]  (* A265760 *)

A265812 Numerators of primes-only best approximates (POBAs) to Pi; see Comments.

Original entry on oeis.org

5, 7, 17, 23, 41, 167, 211, 223, 619, 757, 977, 1109, 4483, 5237, 5413, 9497, 14423, 16063, 18061, 30841, 45751, 47881, 60661, 137341, 162901, 177811, 211891, 626443, 833719, 38144863, 40436969, 45230587, 93379723, 114431749, 120059441, 185091653, 347672183, 1725229397, 1736068099
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2016

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265806 are also terms of A265801 (denominators of POBAs to tau).

Examples

			The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
    Numerator[tL]   (* A265808 *)
    Denominator[tL] (* A265809 *)
    Numerator[tU]   (* A265810 *)
    Denominator[tU] (* A265811 *)
    Numerator[y]    (* A265812 *)
    Denominator[y]  (* A265813 *)

Extensions

More terms from Bert Dobbelaere, Jul 20 2022

A265813 Denominators of primes-only best approximates (POBAs) to Pi; see Comments.

Original entry on oeis.org

2, 2, 5, 7, 13, 53, 67, 71, 197, 241, 311, 353, 1427, 1667, 1723, 3023, 4591, 5113, 5749, 9817, 14563, 15241, 19309, 43717, 51853, 56599, 67447, 199403, 265381, 12141887, 12871487, 14397343, 29723689, 36424757, 38216107, 58916503, 110667493, 549157573, 552607639
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2016

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265806 are also terms of A265801 (denominators of POBAs to tau).

Examples

			The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
    Numerator[tL]   (* A265808 *)
    Denominator[tL] (* A265809 *)
    Numerator[tU]   (* A265810 *)
    Denominator[tU] (* A265811 *)
    Numerator[y]    (* A265812 *)
    Denominator[y]  (* A265813 *)

Extensions

More terms from Bert Dobbelaere, Jul 20 2022

A265818 Numerators of primes-only best approximates (POBAs) to e; see Comments.

Original entry on oeis.org

7, 5, 13, 19, 193, 7043, 7603, 11251, 15149, 15361, 17291, 24103, 46643, 49171, 3062207, 5080939, 8481901, 8823377, 22675801, 63342553, 67090433, 71625049, 142362299, 221578729, 244402043, 428023867, 1293881119, 1587183239, 2095606361, 3221097589, 3905501983, 4072807391, 14649723833
Offset: 1

Views

Author

Clark Kimberling, Jan 06 2016

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBA's. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265806 are also terms of A265801 (denominators of POBAs to tau).

Examples

			The POBAs to Pi start with 7/2, 5/2, 13/5, 19/7, 193/71, 7043/2591, 7603/2797. For example, if p and q are primes and q > 2591, then 7043/2591 is closer to e than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = E; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *)
    Numerator[tL]   (* A265814 *)
    Denominator[tL] (* A265815 *)
    Numerator[tU]   (* A265816 *)
    Denominator[tU] (* A265817 *)
    Numerator[y]    (* A265818 *)
    Denominator[y]  (* A265819 *)

Extensions

More terms from Bert Dobbelaere, Jul 21 2022

A265819 Denominators of primes-only best approximates (POBAs) to e; see Comments.

Original entry on oeis.org

2, 2, 5, 7, 71, 2591, 2797, 4139, 5573, 5651, 6361, 8867, 17159, 18089, 1126523, 1869173, 3120317, 3245939, 8341961, 23302423, 24681191, 26349383, 52372163, 81514259, 89910487, 157461181, 475992263, 583892083, 770930497, 1184975581, 1436753887, 1498302107, 5389332217
Offset: 1

Views

Author

Clark Kimberling, Jan 06 2016

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBA's. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265806 are also terms of A265801 (denominators of POBAs to tau).

Examples

			The POBAs to Pi start with 7/2, 5/2, 13/5, 19/7, 193/71, 7043/2591, 7603/2797. For example, if p and q are primes and q > 2591, then 7043/2591 is closer to e than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = E; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *)
    Numerator[tL]   (* A265814 *)
    Denominator[tL] (* A265815 *)
    Numerator[tU]   (* A265816 *)
    Denominator[tU] (* A265817 *)
    Numerator[y]    (* A265818 *)
    Denominator[y]  (* A265819 *)

Extensions

More terms from Bert Dobbelaere, Jul 21 2022

A265807 Denominators of primes-only best approximates (POBAs) to 1/(golden ratio) = 1/tau; see Comments.

Original entry on oeis.org

2, 3, 5, 31, 37, 47, 157, 571, 911, 1021, 1487, 2351, 3571, 24709, 25463, 69247, 80803
Offset: 1

Views

Author

Clark Kimberling, Jan 02 2016

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences. Many terms of A265807 are also terms of A265800 (numerators of POBAs to tau).

Examples

			The POBAs to 1/tau start with 2/2, 2/3, 3/5, 19/31, 23/37, 29/47, 97/157, 353/571. For example, if p and q are primes and q > 157, then 97/157 is closer to 1/tau than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 1/GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265806/A265807 *)
    Numerator[tL]   (* A265799 *)
    Denominator[tL] (* A265798 *)
    Numerator[tU]   (* A265797 *)
    Denominator[tU] (* A265796 *)
    Numerator[y]    (* A265806 *)
    Denominator[y]  (* A265807 *)

Extensions

a(14)-a(17) from Robert Price, Apr 06 2019
Showing 1-6 of 6 results.