A265813 Denominators of primes-only best approximates (POBAs) to Pi; see Comments.
2, 2, 5, 7, 13, 53, 67, 71, 197, 241, 311, 353, 1427, 1667, 1723, 3023, 4591, 5113, 5749, 9817, 14563, 15241, 19309, 43717, 51853, 56599, 67447, 199403, 265381, 12141887, 12871487, 14397343, 29723689, 36424757, 38216107, 58916503, 110667493, 549157573, 552607639
Offset: 1
Examples
The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is.
Programs
-
Mathematica
x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) Numerator[tL] (* A265808 *) Denominator[tL] (* A265809 *) Numerator[tU] (* A265810 *) Denominator[tU] (* A265811 *) Numerator[y] (* A265812 *) Denominator[y] (* A265813 *)
Extensions
More terms from Bert Dobbelaere, Jul 20 2022
Comments