cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A265831 Expansion of Product_{k>=1} 1/(1 - (5*k-1)*x^(5*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 4, 0, 0, 0, 16, 9, 0, 0, 64, 36, 14, 0, 256, 144, 137, 19, 1024, 576, 548, 202, 4120, 2304, 2192, 1537, 16847, 9245, 8768, 6148, 68522, 37462, 35106, 24592, 280649, 153151, 141382, 98407, 1122596, 622810, 572610, 394796, 4490428, 2550289, 2320167
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-1)*x^(5*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^(n/4), where
c = 1.073840819469157289995715447280332198042213811468819293923... if mod(n,4) = 0
c = 0.431347264451907652131063891031332936177772975542057097666... if mod(n,4) = 1
c = 0.283892524489889292147114138438462508437169743150135175791... if mod(n,4) = 2
c = 0.139829615705558896416806329024657454417365487147024035166... if mod(n,4) = 3.

A265832 Expansion of Product_{k>=1} 1/(1 - (5*k-2)*x^(5*k-2)).

Original entry on oeis.org

1, 0, 0, 3, 0, 0, 9, 0, 8, 27, 0, 24, 81, 13, 72, 243, 103, 216, 747, 309, 648, 2345, 927, 1967, 7547, 2781, 6214, 22641, 8371, 19474, 67923, 25531, 62518, 203802, 79097, 187554, 612253, 243947, 562700, 1842300, 764609, 1689142, 5546932, 2293870, 5077244
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-2)*x^(5*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/3), where
c = 1.171555591294550584937080627149625982761747171861533383233... if mod(n,3) = 0
c = 0.337047816440008855542662141834272219461954848118918717600... if mod(n,3) = 1
c = 0.518706292284531581251050944157928147536875425948432140453... if mod(n,3) = 2.

A265833 Expansion of Product_{k>=1} 1/(1 - (5*k-3)*x^(5*k-3)).

Original entry on oeis.org

1, 0, 2, 0, 4, 0, 8, 7, 16, 14, 32, 28, 76, 56, 201, 112, 402, 241, 804, 566, 1608, 1475, 3238, 2950, 6739, 5900, 14066, 11827, 30533, 24012, 61066, 49865, 122164, 103846, 245070, 224499, 494374, 449035, 1001635, 898992, 2032082, 1805626, 4181855, 3640890
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - (5*k-3)*x^(5*k-3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^(n/2), where
c = 2.083307142076305100818196347525098347528893162823662452462... if n is even,
c = 1.350596787589129261746699661559125050005090208149022621867... if n is odd.
Showing 1-3 of 3 results.