cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265888 a(n) = n + floor(n/4)*(-1)^(n mod 4).

Original entry on oeis.org

0, 1, 2, 3, 5, 4, 7, 6, 10, 7, 12, 9, 15, 10, 17, 12, 20, 13, 22, 15, 25, 16, 27, 18, 30, 19, 32, 21, 35, 22, 37, 24, 40, 25, 42, 27, 45, 28, 47, 30, 50, 31, 52, 33, 55, 34, 57, 36, 60, 37, 62, 39, 65, 40, 67, 42, 70, 43, 72, 45, 75, 46, 77, 48, 80, 49, 82, 51, 85, 52, 87
Offset: 0

Views

Author

Bruno Berselli, Dec 18 2015

Keywords

Comments

This sequence does not include the numbers of the type 3*A047202(n)+2.
a(n) = n + floor(n/4)*(-1)^(n mod 2). - Chai Wah Wu, Jan 29 2023

Crossrefs

Cf. A064455: n+floor(n/2)*(-1)^(n mod 2).
Cf. A265667: n+floor(n/3)*(-1)^(n mod 3).
Cf. A265734: n+floor(n/5)*(-1)^(n mod 5).

Programs

  • Magma
    [n+Floor(n/4)*(-1)^(n mod 4): n in [0..70]];
    
  • Mathematica
    Table[n + Floor[n/4] (-1)^Mod[n, 4], {n, 0, 70}]
    LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 2, 3, 5, 4}, 80]
  • PARI
    x='x+O('x^100); concat(0, Vec(x*(1+2*x+2*x^2+3*x^3)/((1+x^2)*(1- x^2)^2))) \\ Altug Alkan, Dec 22 2015
    
  • Python
    def A265888(n): return n+(-(n>>2) if n&1 else n>>2) # Chai Wah Wu, Jan 29 2023
  • Sage
    [n+floor(n/4)*(-1)^mod(n, 4) for n in (0..70)]
    

Formula

G.f.: x*(1 + 2*x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - x^2)^2).
a(n) = a(n-2) + a(n-4) - a(n-6) for n>5.
a(n+1) + a(n) = A047624(n+1).
a(4*k+r) = (4+(-1)^r)*k + r mod 3, where r = 0..3.