A265888 a(n) = n + floor(n/4)*(-1)^(n mod 4).
0, 1, 2, 3, 5, 4, 7, 6, 10, 7, 12, 9, 15, 10, 17, 12, 20, 13, 22, 15, 25, 16, 27, 18, 30, 19, 32, 21, 35, 22, 37, 24, 40, 25, 42, 27, 45, 28, 47, 30, 50, 31, 52, 33, 55, 34, 57, 36, 60, 37, 62, 39, 65, 40, 67, 42, 70, 43, 72, 45, 75, 46, 77, 48, 80, 49, 82, 51, 85, 52, 87
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).
Crossrefs
Programs
-
Magma
[n+Floor(n/4)*(-1)^(n mod 4): n in [0..70]];
-
Mathematica
Table[n + Floor[n/4] (-1)^Mod[n, 4], {n, 0, 70}] LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 2, 3, 5, 4}, 80]
-
PARI
x='x+O('x^100); concat(0, Vec(x*(1+2*x+2*x^2+3*x^3)/((1+x^2)*(1- x^2)^2))) \\ Altug Alkan, Dec 22 2015
-
Python
def A265888(n): return n+(-(n>>2) if n&1 else n>>2) # Chai Wah Wu, Jan 29 2023
-
Sage
[n+floor(n/4)*(-1)^mod(n, 4) for n in (0..70)]
Formula
G.f.: x*(1 + 2*x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - x^2)^2).
a(n) = a(n-2) + a(n-4) - a(n-6) for n>5.
a(n+1) + a(n) = A047624(n+1).
a(4*k+r) = (4+(-1)^r)*k + r mod 3, where r = 0..3.
Comments