cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A265890 Array read by ascending antidiagonals: A(n,k) = A099563(A265609(n,k)), with n as row >= 0, k as column >= 0; the most significant digit in the factorial base representation of rising factorial n^(k) = (n+k-1)!/(n-1)!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 2, 3, 2, 1, 1, 0, 1, 1, 1, 1, 3, 1, 1, 0, 1, 1, 1, 1, 1, 3, 1, 1, 0, 1, 1, 2, 2, 2, 1, 4, 1, 1, 0, 1, 1, 3, 4, 4, 3, 1, 4, 1, 1, 0, 1, 1, 3, 1, 1, 6, 3, 1, 5, 1, 1, 0, 1, 1, 4, 1, 1, 1, 8, 4, 1, 5, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 5, 2, 6, 1, 1, 0, 1, 2, 1, 2, 3, 3, 3, 2, 1, 6, 2, 6, 1, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Dec 19 2015

Keywords

Comments

Square array A(row,col) is read by ascending antidiagonals as: A(0,0), A(1,0), A(0,1), A(2,0), A(1,1), A(0,2), A(3,0), A(2,1), A(1,2), A(0,3), ...
A265609(n,k) is the rising factorial, also known as Pochhammer symbol and A099563(n) is the most significant "digit" (place holder) in the factorial representation (A007623) of n.

Examples

			The top left corner of the array A265609 with its terms shown in factorial base (A007623) looks like this:
1,   0,    0,     0,       0,        0,         0,          0,           0
1,   1,   10,   100,    1000,    10000,    100000,    1000000,    10000000
1,  10,  100,  1000,   10000,   100000,   1000000,   10000000,   100000000
1,  11,  200,  2200,   30000,   330000,   4000000,   44000000,   500000000
1,  20,  310, 10000,  110000,  1220000,  14000000,  160000000,  1830000000
1,  21, 1100, 13300,  220000,  3000000,  36000000,  452000000,  5500000000
1, 100, 1300, 24000,  411000,  6000000,  82000000, 1100000000, 13300000000
1, 101, 2110, 41000, 1000000, 13000000, 174000000, 2374000000, 30360000000
-
Taking the most significant "digit" (placeholder that may get arbitrarily large values) gives us the top left corner of this array:
-
1, 0, 0, 0, 0, 0, 0, 0,  0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0
1, 1, 1, 1, 1, 1, 1, 1,  1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
1, 1, 1, 1, 1, 1, 1, 1,  1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
1, 1, 2, 2, 3, 3, 4, 4,  5, 5,  6,  6,  7,  7,  8,  8,  9,  9, 10, 10, 11
1, 2, 3, 1, 1, 1, 1, 1,  1, 2,  2,  2,  2,  2,  2,  3,  3,  3,  3,  3,  3
1, 2, 1, 1, 2, 3, 3, 4,  5, 6,  7,  8, 10, 11, 12, 14, 15, 17, 19, 21,  1
1, 1, 1, 2, 4, 6, 8, 1,  1, 1,  1,  2,  2,  2,  2,  3,  3,  3,  4,  4,  5
1, 1, 2, 4, 1, 1, 1, 2,  3, 3,  4,  5,  6,  8,  9, 11, 12, 14, 16, 19, 21
1, 1, 3, 1, 1, 2, 3, 4,  6, 8, 11, 14,  1,  1,  1,  1,  2,  2,  2,  3,  3
1, 1, 3, 1, 2, 3, 5, 8,  1, 1,  1,  2,  2,  3,  4,  5,  6,  7,  8, 10, 12
1, 1, 4, 1, 3, 5, 9, 1,  2, 2,  3,  5,  6,  8, 11, 14, 17, 21,  1,  1,  1
1, 1, 1, 2, 4, 8, 1, 2,  3, 5,  7, 10, 14,  1,  1,  1,  2,  2,  3,  3,  4
1, 2, 1, 3, 6, 1, 2, 4,  6, 9, 14,  1,  1,  2,  3,  4,  5,  6,  8, 10, 13
1, 2, 1, 3, 1, 2, 3, 6, 10, 1,  1,  2,  3,  5,  6,  9, 12, 16, 21,  1,  1
1, 2, 1, 4, 1, 2, 5, 9,  1, 2,  3,  4,  7, 10, 14, 20,  1,  1,  2,  2,  3
1, 2, 2, 5, 1, 3, 7, 1,  2, 3,  5,  8, 13,  1,  1,  1,  2,  3,  4,  6,  8
...
		

Crossrefs

Column 1: A099563.
Row 0: A000007, rows 1 & 2: A000012, row 3: A008619 (see comment in A001710).
Row 4: 1,2,3 followed by A097992 ?
Main diagonal: A265891 (essentially, without the initial 1 from the corner of this array).
Cf. also array A265892.

Programs