cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A265894 a(n) = A099563(A001813(n)); the most significant digit in factorial base representation of (2n)! / n!.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 4, 1, 2, 7, 1, 3, 10, 1, 3, 11, 1, 3, 10, 1, 3, 8, 25, 2, 6, 19, 1, 4, 13, 38, 2, 7, 23, 1, 4, 13, 39, 2, 6, 20, 1, 3, 9, 29, 1, 4, 13, 40, 1, 5, 16, 51, 2, 6, 20, 62, 2, 7, 23, 70, 2, 8, 25, 77, 2, 8, 25, 79, 2, 8, 25, 78, 2, 7, 23, 73, 2, 6, 21, 66, 1, 6, 18, 57, 1, 4, 15, 47, 1, 3, 12, 38, 118, 3, 9
Offset: 0

Views

Author

Antti Karttunen, Dec 24 2015

Keywords

Examples

			The terms A001813(0) .. A001813(8) in factorial base representation (A007623) look as:
  1, 10, 200, 10000, 220000, 6000000, 174000000, 4760000000, 110000000000, ...
Taking the first digit (actually: a place holder value) of each gives the terms a(0) .. a(8) of this sequence: 1, 1, 2, 1, 2, 6, 1, 4, 1, ...
		

Crossrefs

Submain diagonal of A265890.
Cf. A265898 (positions of ones), A265899 (of descents), A266120 (local maxima just before those descents).
Cf. also A265891.

Programs

  • Mathematica
    factBaseIntDs[n_] := Module[{m, i, len, dList, currDigit}, i = 1; While[n > i!, i++ ]; m = n; len = i; dList = Table[0, {len}]; Do[ currDigit = 0; While[m >= j!, m = m - j!; currDigit++ ]; dList[[len - j + 1]] = currDigit, {j, i, 1, -1}]; If[dList[[1]] == 0, dList = Drop[dList, 1]]; dList]; (* taken from A007623,  Alonso del Arte, May 03 2006 *) f[n_] := factBaseIntDs[(2 n)!/n!][[1]]; Array[f, 96, 0] (* Robert G. Wilson v, Dec 25 2015 *)
  • PARI
    allocatemem((2^31)); \\ Enough?
    A099563(n) = { my(i=2,dig=0); until(0==n, dig = n % i; n = (n - dig)/i; i++); return(dig); };
    A265894 = n -> A099563((2*n)! / n!);
    
  • Scheme
    (define (A265894 n) (A099563 (A001813 n)))
    
  • Scheme
    (define (A265894 n) (A265890bi (+ 1 n) n)) ;; Code for A265890bi given in A265890.

Formula

a(n) = A099563(A001813(n)).
a(n) = A265890(n+1, n).

A265334 Numbers that are >= k! but < 2*k! for some k; numbers whose factorial base representation (A007623) begins with digit "1".

Original entry on oeis.org

1, 2, 3, 6, 7, 8, 9, 10, 11, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2015

Keywords

Comments

Numbers k for which A099563(k) = 1.
Numbers k for which A265333(k) = 1.

Examples

			1 is present as 1 >= 1! but < 2*1!
2 is present as 2 >= 2! but < 2*2!
3 is present as 3 >= 2! but < 2*2!
4 is not present as 4 >= 2! but not < 2*2! (and not >= 3!).
		

Crossrefs

Cf. A007623, A099563, A265333 (characteristic function).
Cf. A059590, A060112 (subsequences).
Cf. also A265897, A265898.

A265899 After a(1) = 1, positions of descents in A265894.

Original entry on oeis.org

1, 3, 6, 8, 11, 14, 17, 20, 24, 27, 31, 34, 38, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 94, 98, 102, 106, 111, 115, 120, 124, 128, 133, 137, 142, 146, 151, 156, 160, 165, 169, 174, 179, 184, 188, 193, 198, 202, 207, 212, 217, 222, 227, 231, 236, 241, 246, 251, 256, 261, 266, 271, 276, 281, 286, 291, 296, 301
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2015

Keywords

Comments

Numbers n for which A099563(A001813(n)) <= A099563(A001813(n-1)), where A001813(n) = (2n)! / n!, and A099563 gives the most significant digit in the factorial base representation (A007623) of n.

Crossrefs

Cf. A265898 (a subsequence), A266119 (first differences), A266120 (terms immediately before descents).
Cf. also A031435.

Programs

  • PARI
    A099563(n) = { my(i=2,dig=0); until(0==n, dig = n % i; n = (n - dig)/i; i++); return(dig); };
    A265894 = n -> A099563((2*n)! / n!);
    my(i=0, p=1, n=0); while(i < 60, n++; my(k = A265894(n)); if(k <= p, i++; print1(n, ", ")); p = k; );
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A265899 (MATCHING-POS 1 1 (lambda (n) (<= (A265894 n) (A265894 (- n 1))))))

A265897 Numbers n for which (2n+1)! / n! [= A000407(n)] is >= k! but < 2*k! for some k; positions of ones in A265891.

Original entry on oeis.org

0, 1, 3, 8, 11, 14, 17, 20, 23, 30, 37, 41, 52, 56, 60, 64, 68, 72, 76, 89, 93, 97, 106, 110, 119, 128, 132, 137, 146, 155, 164, 169, 178, 183, 197, 202, 216, 221, 226, 231, 260, 265, 270, 275, 280, 285, 290, 295, 300, 331, 336, 341, 346, 351, 367, 372, 377, 393, 398, 403, 414, 419, 435, 440, 451, 456, 467, 472, 483, 494, 499, 510
Offset: 0

Views

Author

Antti Karttunen, Dec 24 2015

Keywords

Comments

a(0) = 0 is a special case in this sequence, thus the indexing starts from zero.
Numbers n such that A000407(n) is in A265334.

Crossrefs

Cf. also A265898.
Showing 1-4 of 4 results.