A266072 Number of ON (black) cells in the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.
1, 1, 1, 5, 1, 9, 1, 13, 1, 17, 1, 21, 1, 25, 1, 29, 1, 33, 1, 37, 1, 41, 1, 45, 1, 49, 1, 53, 1, 57, 1, 61, 1, 65, 1, 69, 1, 73, 1, 77, 1, 81, 1, 85, 1, 89, 1, 93, 1, 97, 1, 101, 1, 105, 1, 109, 1, 113, 1, 117, 1, 121, 1, 125, 1, 129, 1, 133, 1, 137, 1, 141
Offset: 0
Examples
From _Michael De Vlieger_, Dec 21 2015: (Start) First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row: 1 = 1 1 . . = 1 . . . 1 . = 1 1 1 1 1 . . 1 = 5 . . . . . . 1 . . = 1 1 1 1 1 1 1 1 . . 1 1 = 9 . . . . . . . . . 1 . . . = 1 1 1 1 1 1 1 1 1 1 1 . . 1 1 1 = 13 . . . . . . . . . . . . 1 . . . . = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . 1 1 1 1 = 17 . . . . . . . . . . . . . . . 1 . . . . . = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . 1 1 1 1 1 = 21 (End)
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Mathematica
rule = 3; rows = 30; Table[Total[Table[Take[CellularAutomaton[rule, {{1},0},rows-1,{All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]
Formula
Conjectured g.f.: (1 + x - x^2 + 3*x^3)/(-1 + x^2)^2. - Michael De Vlieger, Dec 21 2015
Conjectures from Colin Barker, Dec 21 2015: (Start)
a(n) = n-(-1)^n*(n-1).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Comments