cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266072 Number of ON (black) cells in the n-th iteration of the "Rule 3" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 1, 13, 1, 17, 1, 21, 1, 25, 1, 29, 1, 33, 1, 37, 1, 41, 1, 45, 1, 49, 1, 53, 1, 57, 1, 61, 1, 65, 1, 69, 1, 73, 1, 77, 1, 81, 1, 85, 1, 89, 1, 93, 1, 97, 1, 101, 1, 105, 1, 109, 1, 113, 1, 117, 1, 121, 1, 125, 1, 129, 1, 133, 1, 137, 1, 141
Offset: 0

Views

Author

Robert Price, Dec 20 2015

Keywords

Comments

This sequence is A000012 and A016813 interspersed.
Also column 1 of A271343. - Omar E. Pol, Apr 06 2016

Examples

			From _Michael De Vlieger_, Dec 21 2015: (Start)
First 12 rows, replacing "0" with "." for better visibility of ON cells, followed by the total number of 1's per row:
                      1                        =  1
                    1 . .                      =  1
                  . . . 1 .                    =  1
                1 1 1 1 . . 1                  =  5
              . . . . . . 1 . .                =  1
            1 1 1 1 1 1 1 . . 1 1              =  9
          . . . . . . . . . 1 . . .            =  1
        1 1 1 1 1 1 1 1 1 1 . . 1 1 1          = 13
      . . . . . . . . . . . . 1 . . . .        =  1
    1 1 1 1 1 1 1 1 1 1 1 1 1 . . 1 1 1 1      = 17
  . . . . . . . . . . . . . . . 1 . . . . .    =  1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . 1 1 1 1 1  = 21
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule = 3; rows = 30; Table[Total[Table[Take[CellularAutomaton[rule, {{1},0},rows-1,{All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]

Formula

Conjectured g.f.: (1 + x - x^2 + 3*x^3)/(-1 + x^2)^2. - Michael De Vlieger, Dec 21 2015
Conjectures from Colin Barker, Dec 21 2015: (Start)
a(n) = n-(-1)^n*(n-1).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)