A266101 T(n,k)=Number of nXk integer arrays with each element equal to the number of horizontal and antidiagonal neighbors exactly one smaller than itself.
1, 3, 1, 4, 5, 1, 5, 13, 16, 1, 9, 36, 64, 39, 1, 16, 100, 161, 230, 105, 1, 25, 233, 736, 929, 1012, 272, 1, 39, 680, 3846, 6307, 4893, 3928, 715, 1, 64, 2201, 16103, 52171, 53442, 26948, 16428, 1869, 1, 105, 6508, 62778, 371130, 841668, 457738, 145274, 65736
Offset: 1
Examples
Some solutions for n=4 k=4 ..1..0..1..1....0..1..2..1....0..1..2..1....0..0..0..1....1..0..0..0 ..0..2..0..1....1..0..0..1....1..0..0..1....1..1..1..0....1..2..1..2 ..1..0..1..2....1..2..1..1....1..1..1..1....2..1..1..2....0..1..1..1 ..0..1..1..0....0..0..0..1....1..0..0..0....0..2..1..0....1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=3: a(n) = a(n-1) +12*a(n-2) +5*a(n-3) -12*a(n-4) -2*a(n-5)
k=4: [order 15] for n>16
k=5: [order 17] for n>20
k=6: [order 72] for n>75
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-3) +a(n-4)
n=2: [order 16] for n>19
n=3: [order 64] for n>68
Comments