A266110 If A082284(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A082284(n)), where A082284(n) = smallest number k such that k - d(k) = n, or 0 if no such number exists, and d(n) = the number of divisors of n (A000005).
4, 3, 4, 2, 1, 1, 3, 0, 0, 2, 2, 1, 3, 0, 1, 2, 1, 1, 2, 0, 0, 6, 1, 5, 0, 0, 2, 4, 0, 3, 4, 2, 1, 0, 3, 1, 0, 0, 2, 2, 0, 1, 2, 0, 1, 8, 1, 7, 1, 0, 0, 6, 0, 5, 3, 0, 0, 4, 2, 3, 7, 2, 1, 0, 0, 1, 0, 0, 0, 4, 1, 3, 6, 2, 0, 0, 8, 1, 4, 0, 1, 7, 3, 6, 5, 0, 2, 5, 0, 4, 12, 5, 1, 3, 11, 4, 4, 3, 0, 2, 0, 1, 10, 0, 3, 2, 9, 1, 0, 0, 1, 1, 0, 0, 8, 2, 0, 0, 7, 1, 2, 6
Offset: 0
Keywords
Examples
Starting from n = 21, we get the following chain: 21 -> 23 -> 27 -> 29 -> 31 -> 35 -> 37, with A082284 iterated 6 times before the final term 37 (for which A060990(37) = A082284(37) = 0) is encountered. Thus a(21) = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..124340
Comments