cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082284 a(n) = smallest number k such that k - tau(k) = n, or 0 if no such number exists, where tau(n) = the number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 6, 5, 8, 7, 9, 0, 0, 11, 14, 13, 18, 0, 20, 17, 24, 19, 22, 0, 0, 23, 25, 27, 0, 0, 32, 29, 0, 31, 34, 35, 40, 0, 38, 37, 0, 0, 44, 41, 0, 43, 46, 0, 50, 47, 49, 51, 56, 0, 0, 53, 0, 57, 58, 0, 0, 59, 62, 61, 72, 65, 68, 0, 0, 67, 0, 0, 0, 71, 74, 73, 84, 77, 0, 0, 81, 79, 82, 0, 88
Offset: 0

Views

Author

Amarnath Murthy, Apr 14 2003

Keywords

Comments

a(p-2) = p for odd primes p.

Crossrefs

Column 1 of A265751.
Cf. A262686 (the largest such number), A262511 (positions where these are equal and nonzero).
Cf. A266114 (same sequence sorted into ascending order, with zeros removed).
Cf. A266115 (positive numbers missing from this sequence).
Cf. A266110 (number of iterations before zero is reached), A266116 (final nonzero value reached).
Cf. also tree A263267 and its illustration.

Programs

  • Maple
    N:= 1000: # to get a(0) .. a(N)
    V:= Array(0..N):
    for k from 1 to 2*(N+1) do
      v:= k - numtheory:-tau(k);
      if v <= N and V[v] = 0 then V[v]:= k fi
    od:
    seq(V[n],n=0..N); # Robert Israel, Dec 21 2015
  • Mathematica
    Table[k = 1; While[k - DivisorSigma[0, k] != n && k <= 2 (n + 1), k++]; If[k > 2 (n + 1), 0, k], {n, 0, 80}] (* Michael De Vlieger, Dec 22 2015 *)
  • PARI
    allocatemem(123456789);
    uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41).
    uplim2 = 2162160;
    v082284 = vector(uplim1);
    A082284 = n -> if(!n,1,v082284[n]);
    for(n=1, uplim1, k = n-numdiv(n); if((0 == A082284(k)), v082284[k] = n));
    for(n=0, 124340, write("b082284.txt", n, " ", A082284(n)));
    \\ Antti Karttunen, Dec 21 2015
    
  • Scheme
    (define (A082284 n) (if (zero? n) 1 (let ((u (+ n (A002183 (+ 2 (A261100 n)))))) (let loop ((k n)) (cond ((= (A049820 k) n) k) ((> k u) 0) (else (loop (+ 1 k))))))))
    ;; Antti Karttunen, Dec 21 2015

Formula

Other identities and observations. For all n >= 0:
a(n) <= A262686(n).

Extensions

More terms from David Wasserman, Aug 31 2004

A265751 Square array A(row,col): A(row,0) = row and for col >= 1, if A082284(row) is 0, then A(row,col) = 0, otherwise A(row,col) = A(A082284(row),col-1).

Original entry on oeis.org

0, 1, 1, 3, 3, 2, 5, 5, 6, 3, 7, 7, 9, 5, 4, 0, 0, 11, 7, 8, 5, 0, 0, 13, 0, 0, 7, 6, 0, 0, 0, 0, 0, 0, 9, 7, 0, 0, 0, 0, 0, 0, 11, 0, 8, 0, 0, 0, 0, 0, 0, 13, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 13, 14, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 13, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 0, 14
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2015

Keywords

Comments

The square array A(row>=0, col>=0) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
Each row n lists all the nodes in A263267-tree that one encounters when one starts from node with number n and always chooses the smallest possible child of it [given by A082284(n)], and then the smallest possible child of that child, etc, until a leaf-child (one of the terms of A045765) is encountered, after which the rest of the row contains only zeros.

Examples

			The top left corner of the array:
   0,  1,  3,  5,  7,  0,  0,  0,  0
   1,  3,  5,  7,  0,  0,  0,  0,  0
   2,  6,  9, 11, 13,  0,  0,  0,  0
   3,  5,  7,  0,  0,  0,  0,  0,  0
   4,  8,  0,  0,  0,  0,  0,  0,  0
   5,  7,  0,  0,  0,  0,  0,  0,  0
   6,  9, 11, 13,  0,  0,  0,  0,  0
   7,  0,  0,  0,  0,  0,  0,  0,  0
   8,  0,  0,  0,  0,  0,  0,  0,  0
   9, 11, 13,  0,  0,  0,  0,  0,  0
  10, 14, 20,  0,  0,  0,  0,  0,  0
  11, 13,  0,  0,  0,  0,  0,  0,  0
  12, 18, 22, 25,  0,  0,  0,  0,  0
  13,  0,  0,  0,  0,  0,  0,  0,  0
  14, 20,  0,  0,  0,  0,  0,  0,  0
  15, 17, 19,  0,  0,  0,  0,  0,  0
  16, 24,  0,  0,  0,  0,  0,  0,  0
  17, 19,  0,  0,  0,  0,  0,  0,  0
  18, 22, 25,  0,  0,  0,  0,  0,  0
  19,  0,  0,  0,  0,  0,  0,  0,  0
  20,  0,  0,  0,  0,  0,  0,  0,  0
  21, 23, 27, 29, 31, 35, 37,  0,  0
  22, 25,  0,  0,  0,  0,  0,  0,  0
  23, 27, 29, 31, 35, 37,  0,  0,  0
  ...
Starting from n = 21, we get the following chain: 21 -> 23 -> 27 -> 29 -> 31 -> 35 -> 37, with A082284 iterated 6 times before the final nonzero term 37 (for which A060990(37) = A082284(37) = 0) is encountered. Thus the row 21 of array contains terms 21, 23, 27, 29, 31, 35, 37, followed by an infinite number of zeros.
		

Crossrefs

Cf. also A000005, A045765, A060990.
Column 0: A001477, Column 1: A082284.
Cf. A266111 (number of significant terms on each row, without the trailing zeros).
Cf. A266116 (the rightmost term before trailing zeros).
See also array A263271 constructed in the same way, but obtained by following always the largest child A262686, instead of the smallest child A082284.
Cf. also tree A263267 (and its illustration).

Programs

  • Scheme
    (define (A265751 n) (A265751bi (A002262 n) (A025581 n)))
    (define (A265751bi row col) (cond ((zero? col) row) ((A082284 row) => (lambda (lad) (if (zero? lad) lad (A265751bi lad (- col 1)))))))
    ;; Alternatively:
    (define (A265751bi row col) (cond ((zero? col) row) ((and (zero? row) (= 1 col)) 1) ((zero? (A265751bi row (- col 1))) 0) (else (A082284 (A265751bi row (- col 1))))))

Formula

A(row,0) = row and for col >= 1, if A082284(row) is 0, then A(row,col) = 0, otherwise A(row,col) = A(A082284(row),col-1).
A(0,0) = 0, A(0,1) = 1; if col = 0, A(row,0) = row; and for col > 0, if A(row,col-1) = 0, then A(row,col) = 0, otherwise A(row,col) = A082284(A(row,col-1)).

A266110 If A082284(n) = 0, a(n) = 0, otherwise a(n) = 1 + a(A082284(n)), where A082284(n) = smallest number k such that k - d(k) = n, or 0 if no such number exists, and d(n) = the number of divisors of n (A000005).

Original entry on oeis.org

4, 3, 4, 2, 1, 1, 3, 0, 0, 2, 2, 1, 3, 0, 1, 2, 1, 1, 2, 0, 0, 6, 1, 5, 0, 0, 2, 4, 0, 3, 4, 2, 1, 0, 3, 1, 0, 0, 2, 2, 0, 1, 2, 0, 1, 8, 1, 7, 1, 0, 0, 6, 0, 5, 3, 0, 0, 4, 2, 3, 7, 2, 1, 0, 0, 1, 0, 0, 0, 4, 1, 3, 6, 2, 0, 0, 8, 1, 4, 0, 1, 7, 3, 6, 5, 0, 2, 5, 0, 4, 12, 5, 1, 3, 11, 4, 4, 3, 0, 2, 0, 1, 10, 0, 3, 2, 9, 1, 0, 0, 1, 1, 0, 0, 8, 2, 0, 0, 7, 1, 2, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2015

Keywords

Comments

Starting from n, search for a smallest number k such that k - d(k) = n, and if found such a number, replace n with k and repeat the procedure. When eventually such k is no longer found, then (new) n must be one of the terms of A045765. The number of times the procedure can be repeated before that happens is the value of a(n). Sequence A266116 gives the stopping value of n.

Examples

			Starting from n = 21, we get the following chain: 21 -> 23 -> 27 -> 29 -> 31 -> 35 -> 37, with A082284 iterated 6 times before the final term 37 (for which A060990(37) = A082284(37) = 0) is encountered. Thus a(21) = 6.
		

Crossrefs

One less than A266111.
Cf. A045765 (positions of zeros).
Cf. tree A263267 (and its illustration).
Cf. also A264970.
Showing 1-3 of 3 results.