A266117 Lexicographically first injection of positive integers beginning with a(1) such that a(n)*a(n+1) is a term of A265349, i.e., has no multiple occurrences of any nonzero digit when viewed in factorial base (A007623).
1, 2, 3, 4, 5, 10, 11, 6, 7, 12, 8, 9, 24, 13, 18, 19, 26, 14, 17, 22, 21, 16, 15, 32, 30, 20, 23, 29, 42, 28, 25, 48, 34, 53, 41, 54, 27, 40, 33, 36, 37, 61, 65, 44, 49, 72, 39, 38, 51, 52, 55, 59, 47, 46, 58, 50, 60, 62, 31, 66, 56, 57, 64, 45, 80, 63, 74, 69, 68, 35, 79, 100, 73, 43, 67, 70, 71, 78, 84, 87, 92, 90, 76, 96, 75
Offset: 1
Examples
For n = 6, we start searching from the least not yet used number in range a(1) .. a(5) [which is 6, because all the previous terms are fixed] for the first number whose product with a(5) = 5 results a number in A265349. Multiplying 5 (in factorial base "21") with 6 (in factorial base "100") results 30, which in factorial base is "1100", containing digit "1" twice, thus 6 is disqualified. Similarly, products 5*7, 5*8 and 5*9 result 35 = "1121", 40 = "1220" and 45 = "1311", where in all cases one of the nonzero digits occur more than once, so 7, 8 and 9 are also all disqualified. But 5*10 = 50, which has a factorial base representation ("2010") that matches the criterion, thus a(6) = 10.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..14641
- Eric Angelini, a(n)*a(n+1) shows at least twice the same digit, Posting on SeqFan-list Dec 21 2015. [Source of inspiration for this sequence.]
- Index entries for sequences related to factorial base representation
- Index entries for sequences that are permutations of the natural numbers
Comments