cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266121 Lexicographically first injection of natural numbers beginning with a(1)=1 such that 1+(a(n)*a(n+1)) is a fibbinary number (A003714), i.e., has no adjacent 1's in its base-2 representation.

Original entry on oeis.org

1, 3, 5, 4, 2, 8, 9, 7, 12, 6, 14, 24, 11, 13, 20, 16, 10, 26, 40, 17, 15, 39, 28, 19, 27, 25, 23, 48, 22, 30, 44, 31, 33, 32, 18, 36, 29, 47, 45, 52, 21, 55, 49, 84, 61, 43, 51, 53, 80, 34, 64, 37, 35, 59, 75, 117, 93, 91, 57, 41, 100, 82, 50, 104, 42, 98, 106, 90, 114, 72, 58, 144, 65, 63, 151, 56, 38, 54, 76, 71, 60
Offset: 1

Views

Author

Antti Karttunen, Dec 23 2015

Keywords

Comments

It is conjectured that this sequence is not only injective, but also surjective on N, i.e., that it is a true permutation of natural numbers.
A similar sequence, but with condition that "(a(n)*a(n+1)) must be a member of A003714" yields a sequence: 1, 2, 4, 5, 8, 9, 16, 10, 13, 20, ... (A269361) which certainly is not a bijection, because it contains only terms of A091072.
Also, with above condition and the initial value a(1) = 3 the algorithm generates A269363 which contains only terms of A091067. See also A266191.

Examples

			After the initial a(1) = 1, for obtaining the value of a(2) we try the first unused number, which is 2, but (1*2)+1 = 3, which in binary is "11", thus 2 is not qualified at this point of time. So next we try 3, and (1*3)+1 = 4, which in binary is "100", and that satisfies our criterion (no adjacent 1-bits), thus we set a(2) = 3.
For a(3), we test with the least unused numbers 2, 4, 5, etc., yielding products (3*2)+1 = 7 = "111", (3*4)+1 = 13 = "1101" and (3*5)+1 = 16 = "10000" in binary, and only 5 satisfies the criterion, thus we set a(3) = 5.
		

Crossrefs

Left inverse: A266122 (also the right inverse if this sequence is a permutation of natural numbers).
Cf. also A266191 and A266117 for similar permutations.

Extensions

Minor typo in the description corrected by Antti Karttunen, Feb 25 2016