A266141 Number of n-digit primes in which n-1 of the digits are 2's.
4, 2, 3, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
Offset: 1
Examples
a(3) = 3 since 223, 227 and 229 are all primes.
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..10000 (first 1500 terms from Michael De Vlieger and Robert G. Wilson v)
Crossrefs
Programs
-
Mathematica
d = 2; Array[Length@ Select[d (10^# - 1)/9 + (Range[0, 9] - d), PrimeQ] &, 100]
-
Perl
use ntheory ":all"; sub a266141 { my $n=shift; return 4 if $n==1; 0+scalar(grep{is_prime("2"x($n-1).$)} 1,3,7,9); } say a266141($) for 1..20; # Dana Jacobsen, Dec 27 2015
-
Python
from sympy import isprime def A266141(n): return 4 if n==1 else sum(1 for d in '1379' if isprime(int('2'*(n-1)+d))) # Chai Wah Wu, Dec 26 2015
Comments