cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266215 Positive integers x such that x^3 - 1 = y^4 + z^2 for some positive integers y and z.

Original entry on oeis.org

3, 13, 27, 147, 203, 5507, 15661, 16957, 21531, 29931, 38051, 47171, 57147, 84027, 85547, 90891, 167051, 273651, 337501, 392881, 421715, 566691, 609971, 698113, 914701, 1229283, 1435213, 1564573, 1786587, 1987571, 2523387, 2579377, 2716443, 3760347, 3778273
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 24 2015

Keywords

Comments

The conjecture in A266212 implies that this sequence has infinitely many terms.

Examples

			a(1) = 3 since 3^3 - 1 = 1^4 + 5^2.
a(2) = 13 since 13^3 - 1 = 6^4 + 30^2.
a(6) = 5507 since 5507^3 - 1 = 29^4 + 408669^2.
a(16) = 90891 since 90891^3 - 1 = 949^4 + 27387137^2.
a(35) = 3778273 since 3778273^3 - 1 = 85386^4 + 883654380^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]
    n=0;Do[Do[If[SQ[x^3-1-y^4],n=n+1;Print[n," ",x];Goto[aa]],{y,1,(x^3-1)^(1/4)}];Label[aa];Continue,{x,1,10^5}]

Extensions

a(17)-a(35) from Lars Blomberg, Dec 30 2015