A266215 Positive integers x such that x^3 - 1 = y^4 + z^2 for some positive integers y and z.
3, 13, 27, 147, 203, 5507, 15661, 16957, 21531, 29931, 38051, 47171, 57147, 84027, 85547, 90891, 167051, 273651, 337501, 392881, 421715, 566691, 609971, 698113, 914701, 1229283, 1435213, 1564573, 1786587, 1987571, 2523387, 2579377, 2716443, 3760347, 3778273
Offset: 1
Keywords
Examples
a(1) = 3 since 3^3 - 1 = 1^4 + 5^2. a(2) = 13 since 13^3 - 1 = 6^4 + 30^2. a(6) = 5507 since 5507^3 - 1 = 29^4 + 408669^2. a(16) = 90891 since 90891^3 - 1 = 949^4 + 27387137^2. a(35) = 3778273 since 3778273^3 - 1 = 85386^4 + 883654380^2.
Links
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]] n=0;Do[Do[If[SQ[x^3-1-y^4],n=n+1;Print[n," ",x];Goto[aa]],{y,1,(x^3-1)^(1/4)}];Label[aa];Continue,{x,1,10^5}]
Extensions
a(17)-a(35) from Lars Blomberg, Dec 30 2015
Comments