cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266238 a(n+1) = 2^(2*n - 1) + (-1)^n * a(n), a(1) = 1.

Original entry on oeis.org

1, 1, 9, 23, 151, 361, 2409, 5783, 38551, 92521, 616809, 1480343, 9868951, 23685481, 157903209, 378967703, 2526451351, 6063483241, 40423221609, 97015731863, 646771545751, 1552251709801, 10348344732009, 24836027356823, 165573515712151, 397376437709161
Offset: 1

Views

Author

Ben Paul Thurston, Dec 25 2015

Keywords

Examples

			a(4) = 2^(2*3 - 1) + (-1)^3 * 9 = 23.
		

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 15*a(n-2) + 16*a(n-4),a(1)=1,a(2)=1,a(3)=9,a(4)=23},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Dec 25 2017
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n+1]==2^(2n-1)+(-1)^n a[n]},a,{n,30}] (* Harvey P. Dale, Dec 20 2017 *)
    f[n_]:= ((7 +7I)(-I)^n + (7 -7I)*I^n +(-1)^(1 +n) 2^(2n) +2^(2 +2n))/34; Array[f, 26] (* or *)
    CoefficientList[ Series[ -(8x^3 -6x^2 +x +1)/(16x^4 +15x^2 -1), {x, 0, 25}], x] (* or *)
    LinearRecurrence[{0, 15, 0, 16}, {1, 1, 9, 23}, 26] (* Robert G. Wilson v, Dec 24 2017 *)
  • PARI
    a=vector(10^3); a[1]=1; for(n=2, #a, a[n] = 2^(2*n-3)-(-1)^n*a[n-1]); a \\ Altug Alkan, Dec 20 2017
    
  • PARI
    first(n) = Vec(x*(1 + x - 6*x^2 + 8*x^3)/((1 - 4*x)*(1 + 4*x)*(1 + x^2)) + O(x^(n+1))) \\ Iain Fox, Dec 21 2017

Formula

From Colin Barker, Dec 21 2017: (Start)
G.f.: x*(1 + x - 6*x^2 + 8*x^3) / ((1 - 4*x)*(1 + 4*x)*(1 + x^2)). [Proved by Iain Fox, Dec 21 2017]
a(n) = ((7+7*i)*(-i)^n + (7-7*i)*i^n + (-1)^(1+n)*4^n + 4^(1+n)) / 34 where i=sqrt(-1).
a(n) = 15*a(n-2) + 16*a(n-4) for n > 4. [Proved by Iain Fox, Dec 21 2017] (End)

Extensions

Corrected by Harvey P. Dale, Dec 20 2017