cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266288 Expansion of a(q)^2 * (c(q)/3)^3 in powers of q where a(), c() are cubic AGM theta functions.

Original entry on oeis.org

1, 15, 81, 241, 624, 1215, 2402, 3855, 6561, 9360, 14640, 19521, 28562, 36030, 50544, 61681, 83520, 98415, 130322, 150384, 194562, 219600, 279840, 312255, 390001, 428430, 531441, 578882, 707280, 758160, 923522, 986895, 1185840, 1252800, 1498848, 1581201
Offset: 1

Views

Author

Michael Somos, Dec 26 2015

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Convolution of A008653 and A106402.

Examples

			G.f. = x + 15*x^2 + 81*x^3 + 241*x^4 + 624*x^5 + 1215*x^6 + 2402*x^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 5),37);  A[2];
  • Mathematica
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (With[{s = {1, -1, 0}[[Mod[#, 3, 1]]]}, ((#^4)^(#2 + 1) - s^(#2 + 1)) / (#^4 - s)] & @@@ FactorInteger[n])];
  • PARI
    {a(n) = my(A, U1, u3, U9); if( n<1, 0, n--; A = x * O(x^n); U1 = eta(x + A)^3; u3 = eta(x^3 + A); U9 = eta(x^9 + A)^3; polcoeff( U1 * u3^7 * (1 + 9*x*U9/U1)^2, n))};
    
  • PARI
    {a(n) = my(A, p, e, s); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, p^(4*e), s=-(-1)^(p%3);  ((p^4)^(e+1) - s^(e+1)) / (p^4 - s))))};
    

Formula

a(n) is multiplicative with a(p^e) = ((p^4)^(e+1) - s^(e+1)) / (p^4 - s) where s = 0 if p = 3, s = 1 if p == 1 (mod 3), s = -1 if p == 2 (mod 3).
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 4*Pi^5/(729*sqrt(3)) = 0.9694405... (A344778). - Amiram Eldar, Nov 09 2023