A266299 Binary representation of the n-th iteration of the "Rule 14" elementary cellular automaton starting with a single ON (black) cell.
1, 110, 11000, 1100000, 110000000, 11000000000, 1100000000000, 110000000000000, 11000000000000000, 1100000000000000000, 110000000000000000000, 11000000000000000000000, 1100000000000000000000000, 110000000000000000000000000, 11000000000000000000000000000
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..999
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (100).
Programs
-
Mathematica
rule=14; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}] (* Binary Representation of Rows *) LinearRecurrence[{100},{1,110},20] (* Harvey P. Dale, Aug 27 2023 *)
-
Python
print([int(110*100**(n-1)) for n in range(50)]) # Karl V. Keller, Jr., Aug 30 2021
Formula
From Colin Barker, Dec 28 2015 and Apr 14 2019: (Start)
a(n) = 11*10^(2*n-1) for n>0.
a(n) = 100*a(n-1) for n>1.
G.f.: (1+10*x) / (1-100*x).
(End)
a(n) = floor(110*100^(n-1)). - Karl V. Keller, Jr., Aug 30 2021
Comments