cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266305 Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to 2n.

Original entry on oeis.org

1, 1, 7, 74, 1060, 19013, 408650, 10219360, 291158230, 9302358947, 329192040880, 12775809098058, 539351216354728, 24600280965461923, 1205263251360664310, 63115789721408960624, 3517483455875467926588, 207834769804597591153769, 12976002600530598793672490
Offset: 0

Views

Author

Alois P. Heinz, Jan 31 2016

Keywords

Examples

			a(2) = 7:
  [1 1]  [2 1]  [0 1]  [2 0]  [0 2]  [3 0]  [1 0]
  [1 1]  [1 0]  [1 2]  [0 2]  [2 0]  [0 1]  [0 3].
		

Crossrefs

Programs

  • Maple
    gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
    A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
    a:= n-> add(A(2*n, n-j)*(-1)^j*binomial(n, j), j=0..n):
    seq(a(n), n=0..20);
  • Mathematica
    gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[2*n, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)

Formula

a(n) = A138177(2n,n).