A266305 Number of n X n symmetric matrices with nonnegative integer entries and without zero rows or columns such that the sum of all entries is equal to 2n.
1, 1, 7, 74, 1060, 19013, 408650, 10219360, 291158230, 9302358947, 329192040880, 12775809098058, 539351216354728, 24600280965461923, 1205263251360664310, 63115789721408960624, 3517483455875467926588, 207834769804597591153769, 12976002600530598793672490
Offset: 0
Keywords
Examples
a(2) = 7: [1 1] [2 1] [0 1] [2 0] [0 2] [3 0] [1 0] [1 1] [1 0] [1 2] [0 2] [2 0] [0 1] [0 3].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)): A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n): a:= n-> add(A(2*n, n-j)*(-1)^j*binomial(n, j), j=0..n): seq(a(n), n=0..20);
-
Mathematica
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); A[n_, k_] := SeriesCoefficient[ gf[k], {x, 0, n}]; a[n_] := Sum[A[2*n, n-j]*(-1)^j*Binomial[n, j], {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, translated from Maple *)
Formula
a(n) = A138177(2n,n).