A266325 Smallest integer m such that there is a partition of m with product of multiplicities of parts equal to n.
0, 2, 3, 4, 5, 6, 7, 8, 9, 9, 11, 10, 13, 11, 11, 12, 17, 12, 19, 13, 13, 15, 23, 14, 15, 17, 15, 15, 29, 16, 31, 16, 17, 21, 17, 17, 37, 23, 19, 18, 41, 19, 43, 19, 19, 27, 47, 20, 21, 20, 23, 21, 53, 21, 21, 21, 25, 33, 59, 22, 61, 35, 22, 22, 23, 23, 67, 25
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2500
Crossrefs
Cf. A266477.
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, `if`(p=1, 1, 0), `if`(i<1, 0, b(n, i-1, p)+add(`if`(irem(p, j)=0, b(n-i*j, i-1, p/j), 0), j=1..n/i))) end: a:= proc(n) option remember; local m; if isprime(n) then return n fi; for m from 0 do if b(m$2, n)>0 then return m fi od end: seq(a(n), n=1..100);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, If[p == 1, 1, 0], If[i < 1, 0, b[n, i - 1, p] + Sum[If[Mod[p, j] == 0, b[n - i*j, i - 1, p/j], 0], {j, 1, n/i}]]]; a[n_] := a[n] = Module[{m}, If[PrimeQ[n], Return[n]]; For[m = 0, True, m++, If[b[m, m, n] > 0, Return[m]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 21 2016, translated from Maple *)
Formula
a(n) = min { m >= 0 : A266477(m,n) > 0 }.
p in primes => a(p) = p.