A266344 a(n) = number of ways n can be divided into two factors that have the same number of digits in factorial base representation (the two different orders for unequal factors are counted only once).
1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 1, 3
Offset: 1
Examples
1 can be factored just one way, as 1*1, and thus a(1) = 1. 4 can be factored as 2*2, and thus also a(4) = 1, and generally for all perfect squares k, a(k) >= 1. 14 can be factored as 2*7, but as A007623(2) = 2 and A007623(7) = 101, with different number of digits in factorial base (and 1*14 fares even less well), a(14) = 0. 72 can be factored to two divisors so that the factorial base representations are of equal length as 6*12 or 8*9 (where the corresponding factorial base representations are "100" * "200" and "110" * "111"), thus a(72) = 2. 120 can be similarly factored as 6*20 ("100" * "310"), 8*15 ("110" * "211") and 10*12 ("120" * "200"), thus a(120) = 3.
Links
Programs
-
Mathematica
r = Most@ Reverse@ Range@ 10; Map[Length, Table[Flatten@ Map[Differences@ IntegerLength[#, MixedRadix@ r] &, Transpose@ {#, n/#}] &@ TakeWhile[Divisors@ n, # <= Sqrt@ n &], {n, 120}] /. k_ /; k > 0 -> Nothing] (* Michael De Vlieger, Dec 30 2015, Version 10.2 *)
-
PARI
A084558(n) = { my(m=1); if(0==n,n,while(m!<=n,m++);return(m-1)); } A266344(n) = sumdiv(n, d, ((d <= (n/d)) && (A084558(d)==A084558(n/d)))); for(n=1, 14161, write("b266344.txt", n, " ", A266344(n)));