cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350814 Numbers m such that the largest digit in the decimal expansion of 1/m is 3.

Original entry on oeis.org

3, 30, 33, 75, 300, 303, 330, 333, 429, 750, 813, 3000, 3003, 3030, 3125, 3300, 3330, 3333, 4290, 4329, 7500, 7575, 8130, 30000, 30003, 30030, 30300, 30303, 31250, 33000, 33300, 33330, 33333, 42900, 43290, 46875, 75000, 75075, 75750, 76923, 81103, 81300, 300000
Offset: 1

Views

Author

Bernard Schott, Jan 30 2022

Keywords

Comments

If m is a term, 10*m is also a term.
3 is the only prime up to 2.6*10^8 (see comments in A333237).
Some subsequences:
{3, 30, 300, ...} = A093138 \ {1}.
{3, 33, 333, ...} = A002277 \ {0}.
{3, 33, 303, 3003, ...} = 3 * A000533.
{3, 303, 30303, 3030303, ...} = 3 * A094028.

Examples

			As 1/33 = 0.0303030303..., 33 is a term.
As 1/75 = 0.0133333333..., 75 is a term.
As 1/429 = 0.002331002331002331..., 429 is a term.
		

Crossrefs

Similar with largest digit k: A333402 (k=1), A341383 (k=2), A333237 (k=9).
Subsequences: A002277 \ {0}, A093138 \ {1}.
Decimal expansion: A010701 (1/3), A010674 (1/33).

Programs

  • Mathematica
    Select[Range[10^5], Max[RealDigits[1/#][[1]]] == 3 &] (* Amiram Eldar, Jan 30 2022 *)
  • Python
    from fractions import Fraction
    from itertools import count, islice
    from sympy import n_order, multiplicity
    def repeating_decimals_expr(f, digits_only=False):
        """ returns repeating decimals of Fraction f as the string aaa.bbb[ccc].
            returns only digits if digits_only=True.
        """
        a, b = f.as_integer_ratio()
        m2, m5 = multiplicity(2,b), multiplicity(5,b)
        r = max(m2,m5)
        k, m = 10**r, 10**n_order(10,b//2**m2//5**m5)-1
        c = k*a//b
        s = str(c).zfill(r)
        if digits_only:
            return s+str(m*k*a//b-c*m)
        else:
            w = len(s)-r
            return s[:w]+'.'+s[w:]+'['+str(m*k*a//b-c*m)+']'
    def A350814_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda m:max(repeating_decimals_expr(Fraction(1,m),digits_only=True)) == '3',count(max(startvalue,1)))
    A350814_list = list(islice(A350814_gen(),10)) # Chai Wah Wu, Feb 07 2022

Extensions

More terms from Amiram Eldar, Jan 30 2022

A382068 Array read by ascending antidiagonals: A(n,m) is obtained by concatenating the digits of floor(n/m) with those of its fractional part up to the digits of the first period, where the leading and trailing 0's are omitted.

Original entry on oeis.org

1, 2, 5, 3, 1, 3, 4, 15, 6, 25, 5, 2, 1, 5, 2, 6, 25, 13, 75, 4, 16, 7, 3, 16, 1, 6, 3, 142857, 8, 35, 2, 125, 8, 5, 285714, 125, 9, 4, 23, 15, 1, 6, 428571, 25, 1, 10, 45, 26, 175, 12, 83, 571428, 375, 2, 1, 11, 5, 3, 2, 14, 1, 714285, 5, 3, 2, 9
Offset: 1

Views

Author

Stefano Spezia, Mar 14 2025

Keywords

Examples

			The array begins as:
   1,  5,  3,  25,  2,  16,  142857,  125,  1,  1,  9, ...
   2,  1,  6,   5,  4,   3,  285714,   25,  2,  2, 18, ...
   3, 15,  1,  75,  6,   5,  428571,  375,  3,  3, 27, ...
   4,  2, 13,   1,  8,   6,  571428,    5,  4,  4, 36, ...
   5, 25, 16, 125,  1,  83,  714285,  625,  5,  5, 45, ...
   6,  3,  2,  15, 12,   1,  857142,   75,  6,  6, 54, ...
   7, 35, 23, 175, 14, 116,       1,  875,  7,  7, 63, ...
   8,  4, 26,   2, 16,  13, 1142875,    1,  8,  8, 72, ...
   9, 45,  3, 225, 18,  15, 1285714, 1125,  1,  9, 81, ...
  10,  5, 33,  25,  2,  16, 1428571,  125, 11,  1, 90, ...
  11, 55, 36, 275, 22, 183, 1571428, 1375, 12, 11,  1, ...
  ...
A(4,1) = 4 since 4/1 = 4;
A(7,4) = 175 since 7/4 = 1.75;
A(5,7) = 714285 since 5/7 = 0.{714285}*, where {...}* means that these digits repeat forever.
		

Crossrefs

Cf. A000012 (main diagonal), A000027 (1st column), A266385 (1st row).
Showing 1-2 of 2 results.