A266395 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 161280.
0, 0, 0, 0, 15, 75, 225, 525, 1050, 1890, 3150, 4950, 7425, 10725, 15015, 20475, 27300, 35700, 45900, 58140, 72675, 89775, 109725, 132825, 159390, 189750, 224250, 263250, 307125, 356265, 411075, 471975, 539400, 613800, 695640, 785400, 883575, 990675, 1107225
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Programs
-
PARI
concat(vector(4), Vec(15*x^5/(1-x)^5 + O(x^50))) \\ Colin Barker, May 05 2016
Formula
From Colin Barker, Dec 29 2015: (Start)
a(n) = 5*(n-1)*(n-2)*(n-3)*(n-4)/8 = 15*A000332(n-1).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
G.f.: 15*x^5 / (1-x)^5.
(End)