cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266401 Self-inverse permutation of natural numbers: a(n) = A064989(A263273(A003961(n))).

Original entry on oeis.org

1, 2, 5, 4, 3, 10, 17, 8, 13, 6, 11, 20, 9, 34, 71, 16, 7, 26, 19, 12, 23, 22, 21, 40, 41, 18, 227, 68, 31, 142, 29, 32, 53, 14, 67, 52, 61, 38, 107, 24, 25, 46, 59, 44, 65, 42, 73, 80, 49, 82, 197, 36, 33, 454, 55, 136, 137, 62, 43, 284, 37, 58, 571, 64, 45, 106, 35, 28, 89, 134, 15, 104, 47
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2016

Keywords

Comments

Shift primes in the prime factorization of n one step towards larger primes (A003961), then apply the bijective base-3 reverse (A263273) to the resulting odd number, which yields another (or same) odd number, then shift primes in the prime factorization of that second odd number one step back towards smaller primes (A064989).

Crossrefs

Cf. A265369, A265904, A266190, A266403 (other conjugates or similar sequences derived from A263273).

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; g[p_?PrimeQ] := g[p] = Prime[PrimePi@ p + 1]; g[1] = 1; g[n_] := g[n] = Times @@ (g[First@ #]^Last@ # &) /@ FactorInteger@ n; h[n_] := Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Table[h@ f@ g@ n, {n, 82}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 and A263273 *)
  • PARI
    A030102(n) = { my(r=[n%3]); while(0M. F. Hasler's Nov 04 2011 code in A030102.
    A263273 = n -> if(!n,n,A030102(n/(3^valuation(n,3))) * (3^valuation(n, 3))); \\ Taking of the quotient probably unnecessary.
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A266401 = n -> A064989(A263273(A003961(n)));
    for(n=1, 6560, write("b266401.txt", n, " ", A266401(n)));
    
  • Scheme
    (define (A266401 n) (A064989 (A263273 (A003961 n))))

Formula

a(n) = A064989(A263273(A003961(n))).
As a composition of related permutations:
a(n) = A064216(A264996(A048673(n))).
Other identities. For all n >= 0:
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]