cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266435 Binary representation of the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 111, 0, 1111111, 0, 11111111111, 0, 111111111111111, 0, 1111111111111111111, 0, 11111111111111111111111, 0, 111111111111111111111111111, 0, 1111111111111111111111111111111, 0, 11111111111111111111111111111111111, 0, 111111111111111111111111111111111111111
Offset: 0

Views

Author

Robert Price, Dec 29 2015

Keywords

Comments

Rules 31, 55, 63, 87, 95, 119 and 127 also generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Essentially the same as A266217.

Programs

  • Mathematica
    rule=23; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]],{k,1,rows}]   (* Binary Representation of Rows *)
  • Python
    print([(10*100**n-1)//9*(n%2) + 0**n for n in range(33)]) # Karl V. Keller, Jr., Aug 11 2021

Formula

From Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = ((-1)^n-1)*(1-10^(2*n+1))/18 for n>0.
a(n) = 10001*a(n-2)-10000*a(n-4) for n>4.
G.f.: (1+111*x-10001*x^2+1000*x^3+10000*x^4) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)).
(End)
a(n) = (10*100^n-1)/9*(n mod 2) + 0^n. - Karl V. Keller, Jr., Aug 11 2021