A266451 Semiprimes that are the sum of six consecutive semiprimes.
58, 91, 123, 142, 161, 205, 278, 473, 566, 614, 706, 718, 802, 838, 851, 889, 1079, 1211, 1226, 1238, 1262, 1286, 1385, 1415, 1633, 1714, 1819, 1891, 1945, 2005, 2123, 2147, 2194, 2217, 2327, 2374, 2427, 2563, 2594, 2653, 2771, 2815, 2854, 2947, 2987, 3118, 3133, 3151, 3199, 3214, 3305, 3379
Offset: 1
Keywords
Examples
58 = A001358(21) = A001358(1) + ... + A001358(6) = 4+6+9+10+14+15, 91 = A001358(31) = A001358(3) + ... + A001358(8) = 9+10+14+15+21+22.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10^4: # to get all terms where the 6 consecutive semiprimes <= N P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P): SP:= NULL: for i from 1 to nP do for j from 1 to nP while P[i]*P[j] <= N do od: SP:= SP, op(map(`*`,P[i],P[1..j-1])); od: SP:= sort(convert({SP},list)): nSP:= nops(SP): select(numtheory:-bigomega=2, [seq(convert(SP[i..i+5],`+`),i=1..nSP-5)]): # Robert Israel, Nov 19 2017
-
Mathematica
Select[(Total[#] & /@ Partition[Select[Range[4, 9999], 2 == PrimeOmega[#] &], 6, 1]), 2 == PrimeOmega[#] &]