cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A266935 T(n,k)=Number of nXk binary arrays with rows lexicographically nondecreasing and columns lexicographically nondecreasing and row sums nondecreasing and column sums nonincreasing.

Original entry on oeis.org

2, 2, 3, 2, 4, 4, 2, 4, 7, 5, 2, 5, 9, 12, 6, 2, 5, 12, 20, 19, 7, 2, 6, 14, 35, 44, 29, 8, 2, 6, 19, 52, 100, 92, 42, 9, 2, 7, 21, 82, 210, 288, 182, 59, 10, 2, 7, 26, 115, 429, 871, 794, 340, 80, 11, 2, 8, 30, 169, 816, 2577, 3566, 2077, 605, 106, 12, 2, 8, 35, 232, 1534, 7185
Offset: 1

Views

Author

R. H. Hardin, Jan 06 2016

Keywords

Comments

Table starts
..2...2....2.....2......2.......2........2..........2.........2.........2
..3...4....4.....5......5.......6........6..........7.........7.........8
..4...7....9....12.....14......19.......21.........26........30........35
..5..12...20....35.....52......82......115........169.......232.......322
..6..19...44...100....210.....429......816.......1534......2727......4753
..7..29...92...288....871....2577.....7185......19529.....50216....125786
..8..42..182...794...3566...15850....68890.....288333...1155281...4410923
..9..59..340..2077..13899...96503...671796....4605960..30319512.191420936
.10..80..605..5110..50841..555060..6347005...73046059.821453747
.11.106.1028.11869.173470.2977370.56180274.1104862960

Examples

			Some solutions for n=4 k=4
..0..0..0..1....0..0..1..1....0..0..0..1....0..0..0..0....0..0..1..1
..0..1..1..0....1..1..0..0....1..1..1..0....0..0..0..0....1..1..0..0
..1..0..0..1....1..1..1..1....1..1..1..1....0..0..0..1....1..1..0..0
..1..1..1..0....1..1..1..1....1..1..1..1....1..1..1..0....1..1..1..1
		

Crossrefs

Column 1 is A000027(n+1).
Column 2 is A266464.
Row 2 is A004526(n+6).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 11]
k=4: [order 31]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = a(n-1) +a(n-2) -a(n-3)
n=3: a(n) = a(n-1) +a(n-2) -a(n-4) -a(n-5) +a(n-6)
n=4: [order 17]
Showing 1-1 of 1 results.