cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266471 Number of 4 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.

Original entry on oeis.org

5, 12, 29, 66, 137, 261, 463, 775, 1237, 1898, 2817, 4064, 5721, 7883, 10659, 14173, 18565, 23992, 30629, 38670, 48329, 59841, 73463, 89475, 108181, 129910, 155017, 183884, 216921, 254567, 297291, 345593, 400005, 461092, 529453, 605722, 690569
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Examples

			Some solutions for n=4:
..0..0..0..0....0..0..0..0....0..1..1..1....0..0..0..0....0..0..1..1
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..1....0..1..0..0
..1..1..1..1....0..0..0..0....1..0..1..1....1..1..0..0....1..0..0..0
..1..1..1..1....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..1
		

Crossrefs

Row 4 of A266470.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/24)*n^4 + (17/24)*n^3 - (25/24)*n^2 + (257/60)*n + 1.
Conjectures from Colin Barker, Jan 10 2019: (Start)
G.f.: x*(5 - 18*x + 32*x^2 - 28*x^3 + 11*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)