A266471 Number of 4 X n binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
5, 12, 29, 66, 137, 261, 463, 775, 1237, 1898, 2817, 4064, 5721, 7883, 10659, 14173, 18565, 23992, 30629, 38670, 48329, 59841, 73463, 89475, 108181, 129910, 155017, 183884, 216921, 254567, 297291, 345593, 400005, 461092, 529453, 605722, 690569
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..0..0....0..0..0..0....0..1..1..1....0..0..0..0....0..0..1..1 ..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..1....0..1..0..0 ..1..1..1..1....0..0..0..0....1..0..1..1....1..1..0..0....1..0..0..0 ..1..1..1..1....1..1..1..1....1..1..0..0....1..1..1..1....1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A266470.
Formula
Empirical: a(n) = (1/120)*n^5 + (1/24)*n^4 + (17/24)*n^3 - (25/24)*n^2 + (257/60)*n + 1.
Conjectures from Colin Barker, Jan 10 2019: (Start)
G.f.: x*(5 - 18*x + 32*x^2 - 28*x^3 + 11*x^4 - x^5) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)