A266473 Number of 6Xn binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
7, 29, 147, 794, 4074, 18808, 77320, 285494, 959672, 2975483, 8605341, 23428725, 60497931, 149066593, 352233950, 801471439, 1762213254, 3755124007, 7774777259, 15675004492, 30833594755, 59276323572, 111542905766, 205731574732
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1..1....0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1 ..0..1..0..0....1..1..1..0....0..0..1..0....0..1..1..1....0..0..1..0 ..0..1..0..1....1..1..1..0....0..0..1..0....1..0..1..1....0..1..1..0 ..1..0..0..1....1..1..1..1....0..1..0..0....1..1..0..0....1..0..0..0 ..1..0..1..0....1..1..1..1....1..0..0..1....1..1..0..0....1..0..0..0 ..1..1..1..0....1..1..1..1....1..1..0..0....1..1..1..1....1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A266470.
Formula
Empirical: a(n) = (1/121645100408832000)*n^19 + (1/914624815104000)*n^18 + (37/533531142144000)*n^17 + (89/31384184832000)*n^16 + (1039/12553673932800)*n^15 + (116807/62768369664000)*n^14 + (3153461/94152554496000)*n^13 + (511019/1034643456000)*n^12 + (57504877/9656672256000)*n^11 + (48689987/877879296000)*n^10 + (475429693/1207084032000)*n^9 + (2471183497/1207084032000)*n^8 + (117295069721/23538138624000)*n^7 + (79279038437/3362591232000)*n^6 + (2282457077/12108096000)*n^5 - (6773798653/40864824000)*n^4 + (20107095509/9648639000)*n^3 - (10497092849/7718911200)*n^2 + (607842269/116396280)*n + 1
Comments