cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266473 Number of 6Xn binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.

Original entry on oeis.org

7, 29, 147, 794, 4074, 18808, 77320, 285494, 959672, 2975483, 8605341, 23428725, 60497931, 149066593, 352233950, 801471439, 1762213254, 3755124007, 7774777259, 15675004492, 30833594755, 59276323572, 111542905766, 205731574732
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Comments

Row 6 of A266470.

Examples

			Some solutions for n=4
..0..0..1..1....0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1
..0..1..0..0....1..1..1..0....0..0..1..0....0..1..1..1....0..0..1..0
..0..1..0..1....1..1..1..0....0..0..1..0....1..0..1..1....0..1..1..0
..1..0..0..1....1..1..1..1....0..1..0..0....1..1..0..0....1..0..0..0
..1..0..1..0....1..1..1..1....1..0..0..1....1..1..0..0....1..0..0..0
..1..1..1..0....1..1..1..1....1..1..0..0....1..1..1..1....1..1..0..1
		

Crossrefs

Cf. A266470.

Formula

Empirical: a(n) = (1/121645100408832000)*n^19 + (1/914624815104000)*n^18 + (37/533531142144000)*n^17 + (89/31384184832000)*n^16 + (1039/12553673932800)*n^15 + (116807/62768369664000)*n^14 + (3153461/94152554496000)*n^13 + (511019/1034643456000)*n^12 + (57504877/9656672256000)*n^11 + (48689987/877879296000)*n^10 + (475429693/1207084032000)*n^9 + (2471183497/1207084032000)*n^8 + (117295069721/23538138624000)*n^7 + (79279038437/3362591232000)*n^6 + (2282457077/12108096000)*n^5 - (6773798653/40864824000)*n^4 + (20107095509/9648639000)*n^3 - (10497092849/7718911200)*n^2 + (607842269/116396280)*n + 1