A266480 Maximal product of multiplicities of parts of a partition of n.
1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 56, 64, 72, 84, 96, 108, 120, 135, 150, 165, 180, 200, 220, 240, 264, 288, 312, 336, 364, 405, 450, 495, 540, 600, 660, 720, 792, 864, 936, 1008, 1092, 1176, 1260, 1365, 1470, 1575
Offset: 0
Keywords
Examples
a(4) = 4 because the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively. a(21) = 7*4*2 = 56 for partition [1,1,1,1,1,1,1,2,2,2,2,3,3].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..16000 (terms 0..5000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, max(1, n), max(seq(b(n-i*j, i-1)*max(1, j), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..100);
-
Mathematica
Table[Max@ Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 0, 56}] (* Michael De Vlieger, Dec 31 2015 *) b[n_, i_] := b[n, i] = If[n==0 || i==1, Max[1, n], Max[Table[b[n-i*j, i-1]*Max[1, j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)