cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266480 Maximal product of multiplicities of parts of a partition of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 56, 64, 72, 84, 96, 108, 120, 135, 150, 165, 180, 200, 220, 240, 264, 288, 312, 336, 364, 405, 450, 495, 540, 600, 660, 720, 792, 864, 936, 1008, 1092, 1176, 1260, 1365, 1470, 1575
Offset: 0

Views

Author

Emeric Deutsch and Alois P. Heinz, Dec 29 2015

Keywords

Examples

			a(4) = 4 because the products of the multiplicities of the parts in the partitions [4], [1,3], [2,2], [1,1,2], [1,1,1,1] are 1, 1, 2, 2, 4, respectively.
a(21) = 7*4*2 = 56 for partition [1,1,1,1,1,1,1,2,2,2,2,3,3].
		

Crossrefs

Row lengths of A266477.
Cf. A266871.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, max(1, n),
          max(seq(b(n-i*j, i-1)*max(1, j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..100);
  • Mathematica
    Table[Max@ Map[Times @@ Map[Last, Tally@ #] &, IntegerPartitions@ n], {n, 0, 56}] (* Michael De Vlieger, Dec 31 2015 *)
    b[n_, i_] := b[n, i] = If[n==0 || i==1, Max[1, n], Max[Table[b[n-i*j, i-1]*Max[1, j], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 01 2016, after Alois P. Heinz *)