cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266518 Number of ordered partitions of a 2n-set with nondecreasing block sizes and maximal block size equal to n.

Original entry on oeis.org

1, 2, 18, 200, 3290, 61992, 1480248, 39402792, 1229123610, 42349478600, 1640551617848, 69364811821032, 3222214209737432, 161656803984848200, 8772238289222220600, 509677254444910662000, 31677425399312755814970, 2092539622373193784503240
Offset: 0

Views

Author

Alois P. Heinz, Dec 30 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, binomial(n, i)*b(n-i, i))))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, n)-b(2*n, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, Binomial[n, i]*b[n-i, i]]]]; a[n_] := If[n==0, 1, b[2n, n] - b[2n, n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = (2n)! * [x^n] Product_{i=1..n} (i-1)!/(i!-x^i).
a(n) = A262071(2n,n).
a(n) ~ c * 2^(2*n+1/2) * n^n / exp(n), where c = A247551 = 2.529477472079152648... . - Vaclav Kotesovec, Jan 02 2016
a(n) = A327801(2n,n). - Alois P. Heinz, Sep 26 2019