cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A266481 E.g.f.: Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ]^(1/N).

Original entry on oeis.org

1, 1, 5, 55, 993, 25501, 857773, 35850795, 1795564865, 104972371417, 7022842421301, 529428563641759, 44421725002096225, 4106744812439019765, 414834196219620026333, 45462732300569936279251, 5373006006732947705188737, 681229881246574750274962225, 92237589983019368975021777125, 13283769418970268811752725081607, 2027649185923009220298941142143201, 326999803592314489529958494308640461, 55558592280735155060861740192416874125
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2015

Keywords

Comments

Compare to: Limit_{N->oo} [ Sum_{n>=0} (N + n)^n * x^n/n! ]^(1/N) = Sum_{n>=0} (n+1)^(n-1) * x^n/n!.
Conjecture: a(p*n) = 1 (mod p) for n>=0 and all prime p.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 55*x^3/3! + 993*x^4/4! + 25501*x^5/5! + 857773*x^6/6! + 35850795*x^7/7! + 1795564865*x^8/8! + 104972371417*x^9/9! + 7022842421301*x^10/10! +...
where A(x) equals the limit, as N -> oo, of the series
[1 + (N+1)^2*(x/N) + (N+2)^4*(x/N)^2/2! + (N+3)^6*(x/N)^3/3! + (N+4)^8*(x/N)^4/4! + (N+5)^10*(x/N)^5/5! + (N+6)^12*(x/N)^6/6! +...]^(1/N).
RELATED SERIES.
The following limit exists:
G(x) = Limit_{N->oo} [ Sum_{n>=0} (N + n)^(2*n) * (x/N)^n/n! ] / A(x)^N
where
G(x) = 1 + 2*x + 22*x^2/2! + 432*x^3/3! + 12220*x^4/4! + 451480*x^5/5! + 20591784*x^6/6! + 1117635008*x^7/7! + 70348179472*x^8/8! + 5037843612960*x^9/9! + 404453425948000*x^10/10! +...+ A266522(n)*x^n/n! +...
Logarithm of the g.f. A(x) begins:
Log(A(x)) = x + 4*x^2/2! + 42*x^3/3! + 752*x^4/4! + 19360*x^5/5! + 654912*x^6/6! + 27546736*x^7/7! + 1388207872*x^8/8! + 81621893376*x^9/9! + 5488951731200*x^10/10! +...+ A266526(n)*x^n/n! +...
and forms a diagonal in the triangles A266521 and A266488.
		

Crossrefs

Programs

  • PARI
    {A266526(n) = n! * polcoeff( polcoeff( log( sum(m=0,n+1, (m + y)^(2*m) *x^m/m! ) +x*O(x^n) ),n,x), n+1,y)}
    {a(n) = n! * polcoeff( exp( sum(m=1,n+1, A266526(m)*x^m/m! ) +x*O(x^n)), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* Informal listing of terms 0..30 */
    \p100
    P(n) = sum(k=0,31, (n+k)^(2*k) * x^k/k! +O(x^31))
    Vec(round( serlaplace( subst(P(10^100)^(1/10^100),x,x/10^100) )*1.) )

Formula

E.g.f. exp( Sum_{n>=0} A266526(n)*x^n/n! ), where A266526(n) = [x^n*y^(n+1)/n!] log( Sum_{n>=0} (n + y)^(2*n) * x^n/n! ).
a(n) ~ c * d^n * n^(n-2), where d = 2*(1 + sqrt(2)) * exp(1 - sqrt(2)) = 3.19091339076710837219515616759285808414857..., c = sqrt(1 - 1/sqrt(2)) * exp(3 - 2*sqrt(2)) = 0.642492128663019850313957348436... . - Vaclav Kotesovec, Jan 01 2016, updated Mar 17 2024

A318634 a(n) = coefficient of x^(2*n-1)*y^(2*n)/(2*n-1)! in Log( Sum_{n>=0} (n^2 + y^2)^n * x^n/n! ), for n>=1.

Original entry on oeis.org

1, 6, 480, 122640, 66044160, 61482516480, 88135315107840, 180378921026304000, 499734635092800307200, 1801642618822079338905600, 8199046303785011864744755200, 45976521975711536997953490124800, 311502479360401852390993821696000000, 2508845886467091418046335123571343360000, 23693183471722887844366765687378500648960000
Offset: 1

Views

Author

Paul D. Hanna, Sep 04 2018

Keywords

Comments

E.g.f. A(x) = Sum_{n>=1} a(n)*x^(2*n-1)/(2*n-1)! equals the logarithm of the e.g.f. of A318633.

Examples

			E.g.f.: A(x) = x + 6*x^3/3! + 480*x^5/5! + 122640*x^7/7! + 66044160*x^9/9! + 61482516480*x^11/11! + 88135315107840*x^13/13! + 180378921026304000*x^15/15! + ...
The e.g.f. A(x) may also be written using somewhat reduced coefficients
A(x) = x + x^3 + 8*x^5/2! + 146*x^7/3! + 4368*x^9/4! + 184832*x^11/5! + 10190656*x^13/6! + 695211120*x^15/7! + 56648897024*x^17/8! + 5374487515904*x^19/9! + ... + a(n)*(n-1)!/(2*n-1)! * x^(2*n-1)/(n-1)! + ...
Exponentiation yields the e.g.f. of A318633:
exp(A(x)) = 1 + x + x^2/2! + 7*x^3/3! + 25*x^4/4! + 541*x^5/5! + 3361*x^6/6! + 135451*x^7/7! + 1179697*x^8/8! + 72062425*x^9/9! +...+ A318633(n)*x^n/n! + ...
which equals
Limit_{N->oo} [ Sum_{n>=0} (N^2 + n^2)^n * (x/N)^n/n! ]^(1/N).
		

Crossrefs

Programs

  • PARI
    {a(n) = (2*n-1)! * polcoeff( polcoeff( log( sum(m=0, 2*n, (m^2 + y^2)^m *x^m/m! ) +x*O(x^(2*n)) ), 2*n-1, x), 2*n, y)}
    for(n=1, 20, print1(a(n), ", "))

Formula

a(n) ~ 5^(-1/4) * 2^(3*n - 3/2) * (1 + sqrt(5))^(n - 3/2) * exp((1 - sqrt(5))*n + (sqrt(5) - 3)/2) * n^(2*n-3). - Vaclav Kotesovec, Mar 20 2024

A266521 E.g.f.: Log( Sum_{n>=0} (n + y)^(2*n) * x^n/n! ) = Sum_{n>=1} Sum_{k=0..n+1} T(n,k) * x^n*y^k/n!, as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 2, 1, 15, 28, 18, 4, 683, 1278, 933, 316, 42, 62038, 117440, 92680, 38240, 8272, 752, 9342629, 17880090, 14855385, 6881640, 1880340, 288048, 19360, 2100483216, 4054752672, 3490688496, 1743156480, 547098240, 108228192, 12523584, 654912, 658746323647, 1279910119670, 1130161189549, 594323331364, 204256939502, 47125635760, 7147508032, 652959872, 27546736, 274730459045232, 536368375356928, 482514140459520, 263340552849920, 96404466197760, 24628940050176, 4404380994048, 533057051648, 39701769216, 1388207872
Offset: 1

Views

Author

Paul D. Hanna, Jan 01 2016

Keywords

Comments

Row sums form A266520, coefficients in Log( Sum_{n>=0} (n+1)^(2*n) * x^n/n! ).
Column 0 forms A266519, coefficients in log( Sum_{n>=0} n^(2*n) * x^n/n! ).
Rightmost border is A266526.

Examples

			E.g.f.: A(x,y) = x * (1 + 2*y + y^2) +
x^2/2! * (15 + 28*y + 18*y^2 + 4*y^3) +
x^3/3! * (683 + 1278*y + 933*y^2 + 316*y^3 + 42*y^4) +
x^4/4! * (62038 + 117440*y + 92680*y^2 + 38240*y^3 + 8272*y^4 + 752*y^5) +
x^5/5! * (9342629 + 17880090*y + 14855385*y^2 + 6881640*y^3 + 1880340*y^4 + 288048*y^5 + 19360*y^6) +
x^6/6! * (2100483216 + 4054752672*y + 3490688496*y^2 + 1743156480*y^3 + 547098240*y^4 + 108228192*y^5 + 12523584*y^6 + 654912*y^7) +...
where
exp(A(x,y)) = 1 + (1 + y)*x + (2 + y)^4*x^2/2! + (3 + y)^6*x^3/3! + (4 + y)^8*x^4/4! + (5 + y)^10*x^5/5! + (6 + y)^12*x^6/6! +...
This triangle begins:
1, 2, 1;
15, 28, 18, 4;
683, 1278, 933, 316, 42;
62038, 117440, 92680, 38240, 8272, 752;
9342629, 17880090, 14855385, 6881640, 1880340, 288048, 19360;
2100483216, 4054752672, 3490688496, 1743156480, 547098240, 108228192, 12523584, 654912;
658746323647, 1279910119670, 1130161189549, 594323331364, 204256939502, 47125635760, 7147508032, 652959872, 27546736;
274730459045232, 536368375356928, 482514140459520, 263340552849920, 96404466197760, 24628940050176, 4404380994048, 533057051648, 39701769216, 1388207872;
147034646085347145, 288100398039817266, 262835789583073329, 147457696629622032, 56514667400140392, 15510808994500512, 3097157140510272, 445604738641920, 44324678623680, 2758053332736, 81621893376; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k) = n! * polcoeff( polcoeff( log( sum(m=0,n+1, (m + y)^(2*m) *x^m/m! ) +x*O(x^n) ),n,x), k,y)}
    for(n=1,10, for(k=0,n+1, print1(T(n,k),", "));print(""))

A360238 a(n) = [y^n*x^n/n] log( Sum_{m>=0} (m + y)^(2*m) * x^m ) for n >= 1.

Original entry on oeis.org

2, 42, 1376, 60934, 3377252, 224036904, 17282039280, 1519096411230, 149867251224092, 16398595767212452, 1971137737765484444, 258215735255164847944, 36617351885600586385222, 5588967440618883091216208, 913592455995572681826313856, 159241707066923571547572653630
Offset: 1

Views

Author

Paul D. Hanna, Feb 11 2023

Keywords

Comments

Related sequence: A000984(n) = binomial(2*n,n) = [y^n*x^n/n] log( Sum_{m>=0} (1 + y)^(2*m) * x^m ) for n >= 1.

Examples

			L.g.f.: A(x) = 2*x + 42*x^2/2 + 1376*x^3/3 + 60934*x^4/4 + 3377252*x^5/5 + 224036904*x^6/6 + 17282039280*x^7/7 + 1519096411230*x^8/8 + ...
a(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (m + y)^(2*m) * x^m ) = (y^2 + 2*y + 1)*x + (y^4 + 12*y^3 + 42*y^2 + 60*y + 31)*x^2/2 + (y^6 + 30*y^5 + 297*y^4 + 1376*y^3 + 3348*y^2 + 4188*y + 2140)*x^3/3 + (y^8 + 56*y^7 + 1100*y^6 + 10792*y^5 + 60934*y^4 + 209464*y^3 + 436692*y^2 + 510952*y + 258779)*x^4/4 + (y^10 + 90*y^9 + 2945*y^8 + 49960*y^7 + 510160*y^6 + 3377252*y^5 + 14971780*y^4 + 44457000*y^3 + 85336175*y^2 + 96141170*y + 48446971)*x^5/5 + (y^12 + 132*y^11 + 6486*y^10 + 169236*y^9 + 2730921*y^8 + 29547696*y^7 + 224036904*y^6 + 1214958240*y^5 + 4717830978*y^4 + 12868488144*y^3 + 23497266672*y^2 + 25858665696*y + 12994749280)*x^6/6 + ...
Exponentiation yields the g.f. of A360239:
exp(A(x)) = 1 + 2*x + 23*x^2 + 502*x^3 + 16414*x^4 + 716936*x^5 + 39167817*x^6 + 2567058766*x^7 + 196159319943*x^8 + ... + A360239(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(2*m) *x^m ) +x*O(x^n) ), n, x), n, y)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ (1 - exp(-1)/4) * 2^(2*n) * n^(n + 1/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 12 2023

A360340 a(n) = coefficient of x^n*y^(3*n+1)/n! in log( Sum_{n>=0} (n + y)^(4*n) * x^n/n! ).

Original entry on oeis.org

1, 8, 180, 7072, 403960, 30504384, 2874754624, 325376606720, 43039201623552, 6519192650444800, 1113116854379470336, 211577875772377853952, 44316053154112985589760, 10142584803973143241244672, 2518533121682934512363520000, 674412844392686430750000676864
Offset: 1

Views

Author

Paul D. Hanna, Feb 10 2023

Keywords

Examples

			E.g.f.: A(x) = x + 8*x^2/2! + 180*x^3/3! + 7072*x^4/4! + 403960*x^5/5! + 30504384*x^6/6! + 2874754624*x^7/7! + 325376606720*x^8/8! + ... + a(n)*x^n/n! + ...
where a(n) equals the coefficient of y^(3*n+1)*x^n/n! in the series given by
log( Sum_{n>=0} (n + y)^(4*n) * x^n/n! ) = (y^4 + 4*y^3 + 6*y^2 + 4*y + 1)*x + (8*y^7 + 84*y^6 + 392*y^5 + 1050*y^4 + 1736*y^3 + 1764*y^2 + 1016*y + 255)*x^2/2! + (180*y^10 + 3392*y^9 + 30138*y^8 + 165768*y^7 + 622692*y^6 + 1662072*y^5 + 3178509*y^4 + 4282316*y^3 + 3875094*y^2 + 2119644*y + 530675)*x^3/3! + (7072*y^13 + 203056*y^12 + 2832672*y^11 + 25357888*y^10 + 161977312*y^9 + 776565264*y^8 + 2862877120*y^7 + 8183026480*y^6 + 18063131520*y^5 + 30301902248*y^4 + 37428709376*y^3 + 32144205840*y^2 + 17161326976*y + 4292647990)*x^4/4! + ...
Exponentiation yields the e.g.f. of A266483:
exp(A(x)) = 1 + x + 9*x^2/2! + 205*x^3/3! + 8033*x^4/4! + 456561*x^5/5! + 34307545*x^6/6! + 3219222301*x^7/7! + 363018204225*x^8/8! + ... + A266483(n)*x^n/n! + ...
which equals
lim_{N->oo} [ Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ]^(1/N).
RELATED SEQUENCES.
a(n) is divisible by n where a(n)/n begins:
[1, 4, 60, 1768, 80792, 5084064, 410679232, 40672075840, 4782133513728, ...].
		

Crossrefs

Programs

  • PARI
    /* Using logarithmic formula */
    {a(n) = n! * polcoeff( polcoeff( log( sum(m=0, n+1, (m + y)^(4*m) *x^m/m! ) +x*O(x^n) ), n, x), 3*n+1, y)}
    for(n=1, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=1} a(n)*x^n/n! may be defined as follows.
(1) A(x) = Limit_{N->oo} (1/N) * log( Sum_{n>=0} (N + n)^(4*n) * (x/N^3)^n/n! ).
(2) a(n) = [x^n*y^(3*n+1)/n!] log( Sum_{n>=0} (n + y)^(4*n) * x^n/n! ).
a(n) ~ c * d^n * n! / n^(5/2), where d = (16/9) * (3 + 2*sqrt(3)) * exp(2*(2 - sqrt(3))) = 19.6391804025535695723623649299349856005700748518058428... and c = (sqrt(3) - 1) / (6*sqrt(Pi)) = 0.06883590670968059270411496568598690388462... - Vaclav Kotesovec, Feb 12 2023, updated Mar 17 2024
Showing 1-5 of 5 results.