A271343
Triangle read by rows: T(n,k) = A196020(n,k) - A266537(n,k), n>=1, k>=1.
Original entry on oeis.org
1, 1, 5, 1, 1, 0, 9, 3, 1, -2, 1, 13, 5, 0, 1, 0, 0, 17, 7, 3, 1, -6, 0, 1, 21, 9, 0, 0, 1, 0, 3, 0, 25, 11, 0, 0, 1, -10, 0, 3, 29, 13, 7, 0, 1, 1, 0, 0, 0, 0, 33, 15, 0, 0, 0, 1, -14, 3, 5, 0, 37, 17, 0, 0, 0, 1, 0, 0, -2, 3, 41, 19, 11, 0, 0, 1, 1, -18, 0, 7, 0, 0, 45, 21, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0
Offset: 1
Triangle begins:
1;
1;
5, 1;
1, 0;
9, 3;
1, -2, 1;
13, 5, 0;
1, 0, 0;
17, 7, 3;
1, -6, 0, 1;
21, 9, 0, 0;
1, 0, 3, 0;
25, 11, 0, 0;
1, -10, 0, 3;
29, 13, 7, 0, 1;
1, 0, 0, 0, 0;
33, 15, 0, 0, 0;
1, -14, 3, 5, 0;
37, 17, 0, 0, 0;
1, 0, 0, -2, 3;
41, 19, 11, 0, 0, 1;
1, -18, 0, 7, 0, 0;
45, 21, 0, 0, 0, 0;
1, 0, 3, 0, 0, 0;
49, 23, 0, 0, 5, 0;
1, -22, 0, 9, 0, 0;
53, 25, 15, 0, 0, 3;
1, 0, 0, -6, 0, 0, 1;
...
For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18 and the sum of odd divisors of 18 is 1 + 3 + 9 = 13. On the other hand, the 18th row of the triangle is 1, -14, 3, 5, 0, so the alternating row sum is 1 -(-14) + 3 - 5 + 0 = 13, equaling the sum of odd divisors of 18.
A380231
Alternating row sums of triangle A237591.
Original entry on oeis.org
1, 2, 1, 2, 1, 4, 3, 4, 5, 4, 3, 6, 5, 4, 7, 8, 7, 8, 7, 10, 9, 8, 7, 10, 11, 10, 9, 12, 11, 14, 13, 14, 13, 12, 15, 16, 15, 14, 13, 16, 15, 18, 17, 16, 19, 18, 17, 20, 21, 22, 21, 20, 19, 22, 21, 24, 23, 22, 21, 24, 23, 22, 25, 26, 25, 28, 27, 26, 25, 28, 27, 32, 31, 30, 29, 28, 31, 30, 29
Offset: 1
For n = 14 the 14th row of A237591 is [8, 3, 1, 2] hence the alternating row sum is 8 - 3 + 1 - 2 = 4, so a(14) = 4.
On the other hand the 14th row of A237593 is the 14th row of A237591 together with the 14 th row of A237591 in reverse order as follows: [8, 3, 1, 2, 2, 1, 3, 8].
Then with the terms of the 14th row of A237593 we can draw a Dyck path in the first quadrant of the square grid as shown below:
.
(y axis)
.
.
. (4,14) (14,14)
._ _ _ . _ _ _ _ .
. |
. |
. |_
. |
. |_ _
. C |_ _ _
. |
. |
. |
. |
. . (14,4)
. |
. |
. . . . . . . . . . . . . . | . . . (x axis)
(0,0)
.
In the example the point C is the point (9,9).
The three line segments [(4,14),(9,9)], [(14,4),(9,9)] and [(14,14),(9,9)] have the same length.
The points (14,14), (9,9) and (4,14) are the vertices of a virtual isosceles right triangle.
The points (14,14), (9,9) and (14,4) are the vertices of a virtual isosceles right triangle.
The points (4,14), (14,14) and (14,4) are the vertices of a virtual isosceles right triangle.
Other alternating row sums (ARS) related to the Dyck paths of
A237593 and the stepped pyramid described in
A245092 are as follows:
-
row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
a(n) = my(orow = concat(row235791(n), 0)); vecsum(vector(#orow-1, i, (-1)^(i+1)*(orow[i] - orow[i+1]))); \\ Michel Marcus, Apr 13 2025
Showing 1-2 of 2 results.
Comments