A266575 Expansion of q * f(-q^4)^6 / phi(-q) in powers of q where phi(), f() are Ramanujan theta functions.
1, 2, 4, 8, 8, 12, 16, 16, 25, 28, 28, 32, 40, 40, 48, 64, 48, 62, 76, 64, 80, 92, 80, 96, 121, 100, 112, 128, 120, 136, 160, 128, 144, 184, 152, 200, 200, 164, 208, 224, 192, 216, 252, 224, 248, 296, 224, 256, 337, 262, 312, 320, 280, 336, 368, 320, 336, 396
Offset: 1
Keywords
Examples
G.f. = x + 2*x^2 + 4*x^3 + 8*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 16*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
A := Basis( ModularForms( Gamma1(4), 5/2), 59); A[2];
-
Mathematica
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^4]^6 / EllipticTheta[ 4, 0, q], {q, 0, n}]; a[ n_] := SeriesCoefficient[ 2^-4 EllipticTheta[ 3, 0, q] EllipticTheta[ 2, 0, q]^4, {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^6 / eta(x + A)^2, n))};
Formula
Expansion of q * phi(q) * psi(q^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of eta(q^2) * eta(q^4)^6 / eta(q)^2 in powers of q.
Euler transform of period 4 sequence [2, 1, 2, -5, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(-3/2) (t/I)^(5/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A245643.
G.f.: x * Product_{k>0} (1 + x^k) * (1 - x^(4*k))^6 / (1 - x^k).
Convolution inverse of A134414.
Comments