cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266576 Decimal expansion of Pi^2/12 + log(2)^2 + Sum_{j>=1} 1 / (j^2 * 2^(2*j+1)).

Original entry on oeis.org

1, 4, 3, 6, 7, 4, 6, 3, 6, 6, 8, 8, 3, 6, 8, 0, 9, 4, 6, 3, 6, 2, 9, 0, 2, 0, 2, 3, 8, 9, 3, 5, 8, 3, 3, 5, 4, 2, 4, 9, 9, 5, 6, 4, 3, 5, 6, 5, 4, 8, 7, 2, 1, 0, 2, 6, 6, 7, 2, 4, 3, 9, 2, 4, 8, 6, 5, 0, 1, 5, 7, 8, 9, 2, 7, 7, 3, 9, 7, 7, 9, 7, 5, 4, 3, 7, 3, 7, 8, 6, 7, 1, 5, 5, 0, 6, 8, 8, 9, 0, 1, 0, 1, 3, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

A constant related to the asymptotics of A032302.

Examples

			1.436746366883680946362902023893583354249956435654872102667243924865...
		

Crossrefs

Cf. A032302.

Programs

  • Maple
    evalf(Pi^2/6 + log(2)^2/2 + polylog(2, -1/2), 120);
    Digits :=100 ; evalf(dilog(3)) ; # R. J. Mathar, Jan 07 2021
  • Mathematica
    RealDigits[Pi^2/12 + Log[2]^2 + PolyLog[2, 1/4]/2,10,120][[1]]
    RealDigits[-PolyLog[2, -2], 10, 120][[1]] (* Vaclav Kotesovec, Jul 29 2019 *)
  • PARI
    Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) \\ Michel Marcus, Jan 04 2016

Formula

Equals Pi^2/12 + log(2)^2 + Sum_{j>=1} 1 / (j^2 * 2^(2*j+1)).
Equals Pi^2/6 + log(2)^2/2 + polylog(2, -1/2).
Equals Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2.
Equals -polylog(2, -2). - Vaclav Kotesovec, Jul 29 2019