A266576 Decimal expansion of Pi^2/12 + log(2)^2 + Sum_{j>=1} 1 / (j^2 * 2^(2*j+1)).
1, 4, 3, 6, 7, 4, 6, 3, 6, 6, 8, 8, 3, 6, 8, 0, 9, 4, 6, 3, 6, 2, 9, 0, 2, 0, 2, 3, 8, 9, 3, 5, 8, 3, 3, 5, 4, 2, 4, 9, 9, 5, 6, 4, 3, 5, 6, 5, 4, 8, 7, 2, 1, 0, 2, 6, 6, 7, 2, 4, 3, 9, 2, 4, 8, 6, 5, 0, 1, 5, 7, 8, 9, 2, 7, 7, 3, 9, 7, 7, 9, 7, 5, 4, 3, 7, 3, 7, 8, 6, 7, 1, 5, 5, 0, 6, 8, 8, 9, 0, 1, 0, 1, 3, 3
Offset: 1
Examples
1.436746366883680946362902023893583354249956435654872102667243924865...
Links
- Eric Weisstein's World of Mathematics, Dilogarithm
- Eric Weisstein's World of Mathematics, Polylogarithm
- Wikipedia, Polylogarithm
Crossrefs
Cf. A032302.
Programs
-
Maple
evalf(Pi^2/6 + log(2)^2/2 + polylog(2, -1/2), 120); Digits :=100 ; evalf(dilog(3)) ; # R. J. Mathar, Jan 07 2021
-
Mathematica
RealDigits[Pi^2/12 + Log[2]^2 + PolyLog[2, 1/4]/2,10,120][[1]] RealDigits[-PolyLog[2, -2], 10, 120][[1]] (* Vaclav Kotesovec, Jul 29 2019 *)
-
PARI
Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) \\ Michel Marcus, Jan 04 2016
Formula
Equals Pi^2/12 + log(2)^2 + Sum_{j>=1} 1 / (j^2 * 2^(2*j+1)).
Equals Pi^2/6 + log(2)^2/2 + polylog(2, -1/2).
Equals Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2.
Equals -polylog(2, -2). - Vaclav Kotesovec, Jul 29 2019
Comments