cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266612 Binary representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 10, 101, 1010, 10100, 101001, 1010010, 10100101, 101001010, 1010010101, 10100101010, 101001010101, 1010010101010, 10100101010101, 101001010101010, 1010010101010101, 10100101010101010, 101001010101010101, 1010010101010101010, 10100101010101010101
Offset: 0

Views

Author

Robert Price, Jan 01 2016

Keywords

Crossrefs

Programs

  • Mathematica
    rule=41; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}]  (* Binary Representation of Middle Column *)

Formula

Conjectures from Colin Barker, Jan 02 2016 and Apr 17 2019: (Start)
a(n) = (-9*(-1)^n+99991*2^(n-2)*5^(n-3)-11)/198 for n>2.
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>2.
G.f.: (1-x^4+x^5) / ((1-x)*(1+x)*(1-10*x)).
(End)

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022