cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266613 Decimal representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 2, 5, 10, 20, 41, 82, 165, 330, 661, 1322, 2645, 5290, 10581, 21162, 42325, 84650, 169301, 338602, 677205, 1354410, 2708821, 5417642, 10835285, 21670570, 43341141, 86682282, 173364565, 346729130, 693458261, 1386916522, 2773833045, 5547666090, 11095332181
Offset: 0

Views

Author

Robert Price, Jan 01 2016

Keywords

Crossrefs

Programs

  • Maple
    # Rule 41: value in generation r and column c, where c=0 is the central one
    r41 := proc(r::integer,c::integer)
        option remember;
        local up ;
        if r = 0 then
            if c = 0 then
                1;
            else
                0;
            end if;
        else
            # previous 3 bits
            [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ;
            up := op(3,%)+2*op(2,%)+4*op(1,%) ;
            # rule 41 = 00101001_2: {5,3,0}->1, all others ->0
            if up in {5,3,0} then
                1;
            else
                0 ;
            end if;
        end if;
    end proc:
    A266613 := proc(n)
        b := [seq(r41(r,0),r=0..n)] ;
        add(op(-i,b)*2^(i-1),i=1..nops(b)) ;
    end proc:
    smax := 20 ;
    L := [seq(A266613(n),n=0..smax)] ; # R. J. Mathar, Apr 12 2019
  • Mathematica
    rule=41; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}] (* Binary Representation of Middle Column *)

Formula

A266612(n) = A007088(a(n)).
Conjectures from Colin Barker, Jan 02 2016 and Apr 16 2019: (Start)
a(n) = (31*2^n-4*((-1)^n+3))/24 for n>2.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3) for n>5. - [corrected by Karl V. Keller, Jr., Oct 07 2021]
G.f.: (1-x^4+x^5) / ((1-x)*(1+x)*(1-2*x)). (End)
Conjecture: a(n) = A000975(n) + 20*2^(n-5), for n>2. - Andres Cicuttin, Mar 31 2016

Extensions

Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022