A266613 Decimal representation of the middle column of the "Rule 41" elementary cellular automaton starting with a single ON (black) cell.
1, 2, 5, 10, 20, 41, 82, 165, 330, 661, 1322, 2645, 5290, 10581, 21162, 42325, 84650, 169301, 338602, 677205, 1354410, 2708821, 5417642, 10835285, 21670570, 43341141, 86682282, 173364565, 346729130, 693458261, 1386916522, 2773833045, 5547666090, 11095332181
Offset: 0
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
Programs
-
Maple
# Rule 41: value in generation r and column c, where c=0 is the central one r41 := proc(r::integer,c::integer) option remember; local up ; if r = 0 then if c = 0 then 1; else 0; end if; else # previous 3 bits [procname(r-1,c+1),procname(r-1,c),procname(r-1,c-1)] ; up := op(3,%)+2*op(2,%)+4*op(1,%) ; # rule 41 = 00101001_2: {5,3,0}->1, all others ->0 if up in {5,3,0} then 1; else 0 ; end if; end if; end proc: A266613 := proc(n) b := [seq(r41(r,0),r=0..n)] ; add(op(-i,b)*2^(i-1),i=1..nops(b)) ; end proc: smax := 20 ; L := [seq(A266613(n),n=0..smax)] ; # R. J. Mathar, Apr 12 2019
-
Mathematica
rule=41; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k],2],{k,1,rows}] (* Binary Representation of Middle Column *)
Formula
Conjectures from Colin Barker, Jan 02 2016 and Apr 16 2019: (Start)
a(n) = (31*2^n-4*((-1)^n+3))/24 for n>2.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3) for n>5. - [corrected by Karl V. Keller, Jr., Oct 07 2021]
G.f.: (1-x^4+x^5) / ((1-x)*(1+x)*(1-2*x)). (End)
Conjecture: a(n) = A000975(n) + 20*2^(n-5), for n>2. - Andres Cicuttin, Mar 31 2016
Extensions
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022