A266687 Number of partitions of n with product of multiplicities of parts equal to 4.
0, 0, 0, 0, 1, 0, 2, 1, 3, 4, 6, 6, 11, 13, 17, 24, 29, 36, 48, 59, 72, 96, 111, 138, 170, 207, 245, 305, 362, 432, 517, 616, 723, 868, 1013, 1194, 1412, 1644, 1915, 2245, 2605, 3019, 3511, 4051, 4677, 5410, 6209, 7125, 8199, 9372, 10718, 12257, 13975, 15902
Offset: 0
Keywords
Examples
a(6) = 2: [1,1,1,1,2], [1,1,2,2]. a(7) = 1: [1,1,1,1,3]. a(8) = 3: [2,2,2,2], [1,1,3,3], [1,1,1,1,4]. a(9) = 4: [1,2,2,2,2], [1,1,1,1,2,3], [1,1,2,2,3], [1,1,1,1,5]. a(10) = 6: [1,1,2,3,3], [2,2,3,3], [1,1,1,1,2,4], [1,1,2,2,4], [1,1,4,4], [1,1,1,1,6].
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..18694 (terms 0..10000 from Alois P. Heinz)
Crossrefs
Column k=4 of A266477.
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(n=0, `if`(p=1, 1, 0), `if`(i<1, 0, b(n, i-1, p)+add(`if`(irem(p, j)=0, b(n-i*j, i-1, p/j), 0), j=1..n/i))) end: a:= n-> b(n$2, 4): seq(a(n), n=0..70);
-
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[n == 0, If[p == 1, 1, 0], If[i < 1, 0, b[n, i - 1, p] + Sum[If[Mod[p, j] == 0, b[n - i*j, i - 1, p/j], 0], {j, 1, n/i}]]]; a[n_] := b[n, n, 4]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Formula
a(n) ~ c * exp(Pi*sqrt(n/3)) * n^(1/4), where c = 0.0108735520090052... - Vaclav Kotesovec, May 24 2018