A266690 Number of partitions of n with product of multiplicities of parts equal to 7.
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 2, 4, 4, 5, 6, 9, 10, 12, 16, 20, 23, 28, 33, 40, 49, 59, 69, 81, 96, 112, 133, 155, 181, 212, 246, 284, 331, 380, 438, 506, 580, 666, 765, 872, 996, 1136, 1294, 1468, 1669, 1894, 2142, 2426, 2740, 3092, 3488, 3926, 4416
Offset: 0
Keywords
Examples
a(11) = 1: [1,1,1,1,1,1,1,4]. a(12) = 2: [1,1,1,1,1,1,1,2,3], [1,1,1,1,1,1,1,5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Column k=7 of A266477.
Programs
-
Maple
b:= proc(n, i, p) option remember; `if`(i*(p+(i-1)/2)
0, 0, (h-> b(h, min(h, i-1), p/j))(n-i*j)), j=1..min(p, n/i)))) end: a:= n-> b(n$2, 7): seq(a(n), n=0..65); -
Mathematica
b[n_, i_, p_] := b[n, i, p] = If[i*(p + (i - 1)/2) < n, 0, If[n == 0, If[p == 1, 1, 0], b[n, i - 1, p] + Sum[If[Mod[p, j] > 0, 0, Function[h, b[h, Min[h, i - 1], p/j]][n - i*j]], {j, 1, Min[p, n/i]}]]]; a[n_] := b[n, n, 7]; Table[a[n], {n, 0, 65}] (* Jean-François Alcover, May 01 2018, translated from Maple *)
Formula
G.f.: Sum_{k>=1} x^(7*k)/(1+x^k) * Product_{j>=1} (1+x^j).
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = (60*log(2)-37) / (40*3^(3/4)*Pi) = 0.016019584320... - Vaclav Kotesovec, May 24 2018
Comments