cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266699 Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,1/2,1,1,1,...], where 1^n means n ones.

Original entry on oeis.org

4, 5, 1, 16, 29, 89, 220, 589, 1529, 4016, 10501, 27505, 71996, 188501, 493489, 1291984, 3382445, 8855369, 23183644, 60695581, 158903081, 416013680, 1089137941, 2851400161, 7465062524, 19543787429, 51166299745, 133955111824, 350699035709, 918141995321
Offset: 0

Views

Author

Clark Kimberling, Jan 05 2016

Keywords

Comments

See A265762 for a guide to related sequences.

Examples

			Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction:
[1/2,1,1,1,1,...] = sqrt(5)/2 has p(0,x) = -5 + 4*x^2, so a(0) = 4;
[1,1/2,1,1,1,...] = (5 + 2*sqrt(5))/5 has p(1,x) = 1 - 10*x + 5*x^2, so a(1) = 5;
[1,1,1/2,1,1,...] = 6 - 2*sqrt(5) has p(2,x) = 16 - 12*x + x^2, so a(2) = 1.
		

Crossrefs

Programs

  • Magma
    I:=[4,5,1,16]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
    
  • Mathematica
    u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/2}, {{1}}];
    f[n_] := FromContinuedFraction[t[n]];
    t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}]
    Coefficient[t, x, 0] (* A266699 *)
    Coefficient[t, x, 1] (* A266700 *)
    Coefficient[t, x, 2] (* A266699 *)
    Join[{4}, LinearRecurrence[{2, 2, -1}, {5, 1, 16}, 30]] (* Vincenzo Librandi, Jan 06 2016 *)
  • PARI
    Vec((4-3*x-17*x^2+8*x^3)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 07 2016

Formula

a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>3.
G.f.: (4 - 3 x - 17 x^2 + 8 x^3)/(1 - 2 x - 2 x^2 + x^3).
a(n) = (2^(-n)*(-9*(-1)^n*2^(1+n) + (3+sqrt(5))^n*(-1+2*sqrt(5)) - (3-sqrt(5))^n*(1+2*sqrt(5))))/5 for n>0. - Colin Barker, Oct 20 2016