A266699 Coefficient of x^2 in minimal polynomial of the continued fraction [1^n,1/2,1,1,1,...], where 1^n means n ones.
4, 5, 1, 16, 29, 89, 220, 589, 1529, 4016, 10501, 27505, 71996, 188501, 493489, 1291984, 3382445, 8855369, 23183644, 60695581, 158903081, 416013680, 1089137941, 2851400161, 7465062524, 19543787429, 51166299745, 133955111824, 350699035709, 918141995321
Offset: 0
Examples
Let p(n,x) be the minimal polynomial of the number given by the n-th continued fraction: [1/2,1,1,1,1,...] = sqrt(5)/2 has p(0,x) = -5 + 4*x^2, so a(0) = 4; [1,1/2,1,1,1,...] = (5 + 2*sqrt(5))/5 has p(1,x) = 1 - 10*x + 5*x^2, so a(1) = 5; [1,1,1/2,1,1,...] = 6 - 2*sqrt(5) has p(2,x) = 16 - 12*x + x^2, so a(2) = 1.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
Magma
I:=[4,5,1,16]; [n le 4 select I[n] else 2*Self(n-1)+2*Self(n-2)-Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 06 2016
-
Mathematica
u[n_] := Table[1, {k, 1, n}]; t[n_] := Join[u[n], {1/2}, {{1}}]; f[n_] := FromContinuedFraction[t[n]]; t = Table[MinimalPolynomial[f[n], x], {n, 0, 20}] Coefficient[t, x, 0] (* A266699 *) Coefficient[t, x, 1] (* A266700 *) Coefficient[t, x, 2] (* A266699 *) Join[{4}, LinearRecurrence[{2, 2, -1}, {5, 1, 16}, 30]] (* Vincenzo Librandi, Jan 06 2016 *)
-
PARI
Vec((4-3*x-17*x^2+8*x^3)/(1-2*x-2*x^2+x^3) + O(x^100)) \\ Altug Alkan, Jan 07 2016
Formula
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>3.
G.f.: (4 - 3 x - 17 x^2 + 8 x^3)/(1 - 2 x - 2 x^2 + x^3).
a(n) = (2^(-n)*(-9*(-1)^n*2^(1+n) + (3+sqrt(5))^n*(-1+2*sqrt(5)) - (3-sqrt(5))^n*(1+2*sqrt(5))))/5 for n>0. - Colin Barker, Oct 20 2016
Comments