cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266722 Number of ON (black) cells in the n-th iteration of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 2, 14, 2, 18, 2, 22, 2, 26, 2, 30, 2, 34, 2, 38, 2, 42, 2, 46, 2, 50, 2, 54, 2, 58, 2, 62, 2, 66, 2, 70, 2, 74, 2, 78, 2, 82, 2, 86, 2, 90, 2, 94, 2, 98, 2, 102, 2, 106, 2, 110, 2, 114, 2, 118, 2, 122, 2, 126, 2, 130, 2, 134, 2, 138, 2
Offset: 0

Views

Author

Robert Price, Jan 03 2016

Keywords

Comments

For n >= 3, also the number of maximum independent vertex sets in the n-prism graph. - Eric W. Weisstein, Mar 30 2017
For n >= 3, also the number of maximum independent edge sets in the n-web graph. - Eric W. Weisstein, Dec 31 2017
For n >= 10, also the number of minimum dominating sets in the n-gear graph. - Eric W. Weisstein, Sep 09 2021

Crossrefs

Cf. A266716, A266723 (partial sums), A266724.

Programs

  • Mathematica
    rule=59; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]],{k,1,rows}] (* Number of Black cells in stage n *)
    Join[{1}, Table[Piecewise[{{2, Mod[n, 2] == 0}, {2 n, Mod[n, 2] == 1}}], {n, 20}]] (* Eric W. Weisstein, Sep 09 2021 *)
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {2, 2, 6, 2}, 20]] (* Eric W. Weisstein, Sep 09 2021 *)
    CoefficientList[Series[(1 + 2 x + 2 x^3 - x^4)/(-1 + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 09 2021 *)

Formula

From Colin Barker, Jan 05 2016 and Apr 17 2019: (Start)
a(n) = 1+(-1)^n+n-(-1)^n*n for n>0.
a(n) = 2*a(n-2)-a(n-4) for n>4.
G.f.: (1+2*x-x^2)*(1+x^2) / ((1-x)^2*(1+x)^2). (End)