A266739 Number of words on {1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,...,n,n,n,n} avoiding the pattern 123.
1, 1, 70, 3199, 173860, 10203181, 631326526, 40553993125, 2678871322640, 180830423671450, 12418980645870820, 864996624914197495, 60957211831578399100, 4338372535640598835279, 311386494956413595138930, 22513820432313175983170649, 1638226907374445245497453464
Offset: 0
Keywords
Links
- Ferenc Balogh, A generalization of Gessel's generating function to enumerate words with double or triple occurrences in each letter and without increasing subsequences of a given length, preprint arXiv:1505.01389, 2015.
- Shalosh B. Ekhad and Doron Zeilberger, The Generating Functions Enumerating 12..d-Avoiding Words with r occurrences of each of 1,2, ..., n are D-finite for all d and all r, 2014
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
Extensions
More terms from Alois P. Heinz, Jan 14 2016