cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266772 Molien series for invariants of finite Coxeter group D_9.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 1, 7, 1, 11, 2, 15, 3, 22, 5, 30, 7, 41, 11, 54, 15, 73, 22, 94, 30, 123, 41, 157, 54, 201, 73, 252, 94, 318, 123, 393, 157, 488, 201, 598, 252, 732, 318, 887, 393, 1076, 488, 1291, 598, 1549, 732, 1845, 887, 2194, 1076, 2592, 1291, 3060, 1549, 3589, 1845, 4206, 2194, 4904, 2592, 5708, 3060, 6615, 3589
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^9)*(&*[1-x^(2*j): j in [1..8]])) )); // G. C. Greubel, Feb 03 2020
    
  • Maple
    seq(coeff(series(1/((1-x^9)*mul(1-x^(2*j), j=1..8)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Feb 03 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^9)*Product[1-x^(2*j), {j,8}]), {x,0,80}], x] (* G. C. Greubel, Feb 03 2020 *)
  • PARI
    Vec(1/((1-x^9)*prod(j=1,8,1-x^(2*j))) +O('x^80)) \\ G. C. Greubel, Feb 03 2020
    
  • Sage
    def A266772_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^9)*product(1-x^(2*j) for j in (1..8))) ).list()
    A266772_list(80) # G. C. Greubel, Feb 03 2020

Formula

G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^12)*(1-t^14)*(1-t^16)).