A266773 Molien series for invariants of finite Coxeter group D_10 (bisected).
1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 119, 158, 206, 267, 342, 437, 551, 694, 865, 1074, 1324, 1627, 1985, 2414, 2919, 3518, 4219, 5045, 6003, 7125, 8422, 9927, 11660, 13660, 15949, 18578, 21575, 24998, 28884, 33303, 38298, 43955, 50329, 57513, 65581, 74645, 84786
Offset: 0
Keywords
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for Molien series
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^5)*(&*[1-x^j: j in [1..9]])) )); // G. C. Greubel, Feb 03 2020 -
Maple
seq(coeff(series(1/((1-x^5)*mul(1-x^j, j=1..9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Feb 03 2020
-
Mathematica
CoefficientList[Series[1/((1-x^5)*Product[1-x^j, {j,9}]), {x,0,50}], x] (* G. C. Greubel, Feb 03 2020 *)
-
PARI
Vec(1/((1-x^5)*prod(j=1,9,1-x^j)) +O('x^50)) \\ G. C. Greubel, Feb 03 2020
-
Sage
def A266773_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x^5)*product(1-x^j for j in (1..9))) ).list() A266773_list(50) # G. C. Greubel, Feb 03 2020
Formula
G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)^2*(1-t^12)*(1-t^14)*(1-t^16)*(1-t^18)), bisected.
G.f.: 1/( (1-x^5)*(Product_{j=1..9} 1-x^j) ). - G. C. Greubel, Feb 03 2020
Comments