A266774 Molien series for invariants of finite Coxeter group D_11.
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 1, 11, 1, 15, 2, 22, 3, 30, 5, 42, 7, 56, 11, 76, 15, 99, 22, 131, 30, 169, 42, 219, 56, 278, 76, 355, 99, 445, 131, 560, 169, 695, 219, 863, 278, 1060, 355, 1303, 445, 1586, 560, 1930, 695, 2331, 863, 2812, 1060, 3370, 1303, 4035, 1586, 4802, 1930, 5708, 2331, 6751, 2812, 7972, 3370, 9373, 4035, 11004
Offset: 0
Keywords
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for Molien series
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^11)*(&*[1-x^(2*j): j in [1..10]])) )); // G. C. Greubel, Feb 03 2020 -
Maple
seq(coeff(series(1/((1-x^11)*mul(1-x^(2*j), j=1..10)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Feb 03 2020
-
Mathematica
CoefficientList[Series[1/((1-x^11)*Product[1-x^(2*j), {j,10}]), {x,0,80}], x] (* G. C. Greubel, Feb 03 2020 *)
-
PARI
Vec(1/((1-x^11)*prod(j=1,10,1-x^(2*j))) +O('x^80)) \\ G. C. Greubel, Feb 03 2020
-
Sage
def A266774_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x^11)*product(1-x^(2*j) for j in (1..10))) ).list() A266774_list(80) # G. C. Greubel, Feb 03 2020
Formula
G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)*(1-t^11)*(1-t^12)*(1-t^14)*(1-t^16)*(1-t^18)*(1-t^20)).
Comments