A266775 Molien series for invariants of finite Coxeter group D_12 (bisected).
1, 1, 2, 3, 5, 7, 12, 16, 24, 33, 47, 63, 88, 115, 155, 202, 266, 341, 443, 560, 715, 897, 1129, 1401, 1746, 2146, 2645, 3228, 3941, 4771, 5781, 6948, 8353, 9979, 11913, 14144, 16785, 19814, 23374, 27454, 32211, 37645, 43954, 51130, 59417, 68827, 79631, 91863, 105857, 121645
Offset: 0
Keywords
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for Molien series
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^6)*(&*[1-x^j: j in [1..11]])) )); // G. C. Greubel, Jan 31 2020 -
Maple
S:=series(1/((1-x^6)*mul(1-x^j, j=1..11)), x, 55): seq(coeff(S, x, j), j=0..50); # G. C. Greubel, Jan 31 2020
-
Mathematica
CoefficientList[Series[1/((1-t^6)*Product[1-t^j, {j,11}]), {t,0,50}], t] (* G. C. Greubel, Jan 31 2020 *)
-
PARI
Vec( 1/( (1-x^6)*prod(j=1,11, 1-x^j) ) + O('x^50)) \\ G. C. Greubel, Jan 31 2020
-
Sage
[( 1/((1-x^6)*product(1-x^j for j in (1..11))) ).series(x, n+1).list()[n] for n in (0..50)] # G. C. Greubel, Jan 31 2020
Formula
G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)*(1-t^12)^2*(1-t^14)*(1-t^16)*(1-t^18)*(1-t^20)*(1-t^22)), bisected.
G.f.: 1/( (1-t^6)*Product_{j=1..11} (1-t^j) ). - G. C. Greubel, Feb 01 2020
Comments