cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266776 Molien series for invariants of finite Coxeter group A_7.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 18, 19, 27, 30, 40, 44, 58, 64, 82, 91, 113, 126, 155, 171, 207, 230, 274, 303, 358, 395, 462, 509, 589, 649, 746, 818, 934, 1024, 1161, 1269, 1432, 1562, 1753, 1909, 2131, 2317, 2577, 2794, 3095, 3352, 3698, 3997, 4396, 4743, 5200, 5601, 6121, 6584, 7177, 7705, 8377, 8983, 9741, 10429, 11285, 12065
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018
  • Mathematica
    CoefficientList[Series[1/Product[1-t^k, {k,2,8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec(1/prod(k=2,8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)).