A266776 Molien series for invariants of finite Coxeter group A_7.
1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 18, 19, 27, 30, 40, 44, 58, 64, 82, 91, 113, 126, 155, 171, 207, 230, 274, 303, 358, 395, 462, 509, 589, 649, 746, 818, 934, 1024, 1161, 1269, 1432, 1562, 1753, 1909, 2131, 2317, 2577, 2794, 3095, 3352, 3698, 3997, 4396, 4743, 5200, 5601, 6121, 6584, 7177, 7705, 8377, 8983, 9741, 10429, 11285, 12065
Offset: 0
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 1, 1, 1, 0, 0, -1, -1, -2, -2, -1, 1, 2, 2, 3, 2, 1, -1, -2, -3, -2, -2, -1, 1, 2, 2, 1, 1, 0, 0, -1, -1, -1, 0, 1).
- Index entries for Molien series
Crossrefs
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018 -
Mathematica
CoefficientList[Series[1/Product[1-t^k, {k,2,8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *)
-
PARI
t='t+O('t^40); Vec(1/prod(k=2,8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018
Formula
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)).
Comments