A266777 Molien series for invariants of finite Coxeter group A_8.
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 19, 21, 29, 34, 44, 51, 66, 75, 95, 110, 134, 155, 189, 215, 258, 296, 349, 398, 468, 529, 617, 698, 804, 907, 1042, 1167, 1332, 1492, 1690, 1886, 2130, 2366, 2660, 2951, 3298, 3649, 4069, 4484, 4981, 5482, 6064, 6657, 7347, 8041, 8849, 9670, 10605, 11565, 12659, 13769, 15034, 16330, 17782, 19278, 20955
Offset: 0
Keywords
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- Ray Chandler, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,0,-1,-1,-1,-2,-2,0,1,2,3,3,2,1,0,-2,-3,-4,-3,-2,0,1,2,3,3,2,1,0,-2,-2,-1,-1,-1,0,0,1,1,1,0,-1).
- Index entries for Molien series
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (&*[1/(1-x^j): j in [2..9]]) )); // G. C. Greubel, Feb 01 2020 -
Maple
seq(coeff(series( mul(1/(1-x^j), j=2..9), x, n+1), x, n), n = 0..70); # G. C. Greubel, Feb 01 2020
-
Mathematica
CoefficientList[Series[Product[1/(1-x^j), {j,2,9}], {x,0,70}], x] (* G. C. Greubel, Feb 01 2020 *)
-
PARI
Vec( prod(j=2,9, 1/(1-x^j)) + O('x^70) ) \\ G. C. Greubel, Feb 01 2020
-
Sage
def A266777_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( product(1/(1-x^j) for j in (2..9)) ).list() A266777_list(70) # G. C. Greubel, Feb 01 2020
Formula
G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)).
Comments